
 

J.1

 

Introduction J-2

 

J.2

 

A Survey of RISC Architectures for Desktop, Server, and Embedded Computers J-3

 

J.3

 

The Intel 80x86 J-45

 

J.4

 

The VAX Architecture J-65

 

J.5

 

The IBM 360/370 Architecture for Mainframe Computers J-83

 

J.6

 

Historical Perspective and References J-90



 

J

 

Survey of Instruction Set 

Architectures

 

RISC: any computer announced after 1985.

 

Steven Przybylski

 

A Designer of the Stanford MIPS



 

J-2

 

�

 

Appendix J  

 

Survey of Instruction Set Architectures

 

This appendix covers 13 instruction set architectures, some of which remain a
vital part of the IT industry and some of which have retired to greener pastures.
We keep them all in part to show the changes in fashion of instruction set archi-
tecture over time.

We start with ten RISC architectures. There are billions of dollars of comput-
ers shipped each year for ARM (including Thumb), MIPS (including MIPS16),
Power, and SPARC. Indeed, ARM dominates embedded computing. However,
the Digital Alpha and HP PA-RISC were both shoved aside by Itanium, and they
remain primarily of historical interest.

The 80x86 remains a dominant ISA, dominating the desktop and the low-end
of the server market. It has been extended more than any other ISA in this book,
and there are no plans to stop it soon. Now that it has made the transition to 64-bit
addressing, we expect this architecture to be around longer than your authors.

The VAX typifies an ISA where the emphasis was on code size and offering a
higher level machine language in the hopes of being a better match to program-
ming languages. The architects clearly expected it to be implemented with large
amounts of microcode, which made single chip and pipelined implementations
more challenging. Its successor was the Alpha, which had a short life.

The vulnerable IBM 360/370 remains a classic that set the standard for many
instruction sets to follow. Among the decisions the architects made in the early
1960s were:

 

�

 

8-bit byte

 

�

 

Byte addressing

 

�

 

32-bit words

 

�

 

32-bit single precision floating-point format + 64-bit double precession float-
ing-point format

 

�

 

32-bit general purpose registers, separate 64-bit floating-point registers

 

�

 

Binary compatibility across a family of computers with different cost-
performance

 

�

 

Separation of architecture from implementation

As mentioned in Chapter 5, the IBM 370 was extended to be virtualizable, so
it has the lowest overhead for a virtual machine of any ISA. The IBM 360/370
remains the foundation of the IBM mainframe business in a version that has
extended to 64-bits.

J.1 Introduction



 

J.2 A Survey of RISC Architectures for Desktop, Server, and Embedded Computers

 

�

 

J

 

-

 

3

 

Introduction

 

We cover two groups of Reduced Instruction Set Computer (RISC) architectures
in this section. The first group is the desktop and server RISCs: 

 

�

 

Digital Alpha 

 

�

 

MIPS, Inc.

 

�

 

Hewlett-Packard PA-RISC 

 

�

 

IBM and Motorola PowerPC 

 

�

 

Sun Microsystems SPARC 

The second group is the embedded RISCs: 

 

�

 

Advanced RISC Machines ARM 

 

�

 

Advanced RISC Machines Thumb 

 

�

 

Hitachi SuperH 

 

�

 

Mitsubishi M32R 

 

�

 

MIPS, Inc. MIPS16 

Although three of these architectures have faded over time—namely, the
Alpha, PA-RISC, and M32R—there has never been another class of computers so
similar.

There has never been another class of computers so similar. This similarity
allows the presentation of 10 architectures in about 50 pages. Characteristics of
the desktop and server RISCs are found in Figure J.1 and the embedded RISCs in
Figure J.2. 

Notice that the embedded RISCs tend to have 8 to 16 general-purpose regis-
ters while the desktop/server RISCs have 32, and that the length of instructions is
16 to 32 bits in embedded RISCs but always 32 bits in desktop/server RISCs. 

Although shown as separate embedded instruction set architectures, Thumb
and MIPS16 are really optional modes of ARM and MIPS invoked by call
instructions. When in this mode they execute a subset of the native architecture
using 16-bit-long instructions. These 16-bit instruction sets are not intended to be
full architectures, but they are enough to encode most procedures. Both machines
expect procedures to be homogeneous, with all instructions in either 16-bit mode
or 32-bit mode. Programs will consist of procedures in 16-bit mode for density or
in 32-bit mode for performance. 

One complication of this description is that some of the older RISCs have
been extended over the years. We decided to describe more recent versions of the
architectures: Alpha version 3, MIPS64, PA-RISC 2.0, and SPARC version 9 for
the desktop/server; ARM version 4, Thumb version 1, Hitachi SuperH SH-3,
M32R version 1, and MIPS16 version 1 for the embedded ones. 

J.2 A Survey of RISC Architectures for Desktop, Server, 
and Embedded Computers



 

J-4

 

�

 

Appendix J  

 

Survey of Instruction Set Architectures

 

The remaining sections proceed as follows. After discussing the addressing
modes and instruction formats of our RISC architectures, we present the survey
of the instructions in five steps: 

 

 Alpha MIPS I PA-RISC 1.1 PowerPC SPARC v.8 

 

Date announced 1992 1986 1986 1993 1987

Instruction size (bits) 32 32 32 32 32

Address space (size, 
model)

64 bits, flat 32 bits, flat 48 bits, 
segmented

32 bits, flat 32 bits, flat

Data alignment Aligned Aligned Aligned Unaligned Aligned

Data addressing modes 1 1 5 4 2

Protection Page Page Page Page Page

Minimum page size 8 KB 4 KB 4 KB 4 KB 8 KB

I/O Memory mapped Memory mapped Memory mapped Memory mapped Memory mapped

Integer registers 
(number, model, size)

31 GPR  

 

×

 

 64 bits
31 GPR  

 

×

 

 32 bits
31 GPR  

 

×

 

 32 bits
32 GPR  

 

×

 

 32 bits
31 GPR  

 

×

 

 32 bits

Separate floating-point 
registers

31 

 

×

 

 32 or  
31 

 

×

 

 64 bits
16 

 

×

 

 32 or  
16 

 

×

 

 64 bits 
56 

 

×

 

 32 or  
28 

 

×

 

 64 bits 
32 

 

×

 

 32 or  
32 

 

×

 

 64 bits
32 

 

×

 

 32 or  
32 

 

×

 

 64 bits

Floating-point format IEEE 754 single, 
double 

IEEE 754 single,
double

IEEE 754 single,
double

IEEE 754 single,
double

IEEE 754 single, 
double 

 

Figure J.1

 

Summary of the first version of five recent architectures for desktops and servers. 

 

Except for the num-
ber of data address modes and some instruction set details, the integer instruction sets of these architectures are
very similar. Contrast this with Figure J.34. Later versions of these architectures all support a flat, 64-bit address
space.

 

 ARM Thumb SuperH M32R MIPS16 

 

Date announced 1985 1995 1992 1997 1996

Instruction size (bits) 32 16 16 16/32 16/32

Address space (size, 
model)

32 bits, flat 32 bits, flat 32 bits, flat 32 bits, flat 32/64 bits, flat

Data alignment Aligned Aligned Aligned Aligned Aligned

Data addressing modes 6 6 4 3 2

Integer registers 
(number, model, size)

15 GPR x 32 bits 8 GPR + SP, LR 
x 32 bits

16 GPR x 32 bits 16 GPR x 32 bits 8 GPR + SP, RA 
x 32/64 bits

I/O Memory mapped Memory mapped Memory mapped Memory mapped Memory mapped 

 

Figure J.2

 

Summary of five recent architectures for embedded applications.

 

 Except for number of data address
modes and some instruction set details, the integer instruction sets of these architectures are similar. Contrast this
with Figure J.34. 



 

J.2 A Survey of RISC Architectures for Desktop, Server, and Embedded Computers

 

�

 

J

 

-

 

5

 

�

 

Instructions found in the MIPS core, which is defined in Appendix B of the
main text 

 

�

 

Multimedia extensions of the desktop/server RISCs 

 

�

 

Digital signal-processing extensions of the embedded RISCs 

 

�

 

Instructions not found in the MIPS core but found in two or more architec-
tures 

 

�

 

The unique instructions and characteristics of each of the 10 architectures 

We give the evolution of the instruction sets in the final section and conclude with
a speculation about future directions for RISCs. 

 

Addressing Modes and Instruction Formats

 

Figure J.3 shows the data addressing modes supported by the desktop architec-
tures. Since all have one register that always has the value 0 when used in address
modes, the absolute address mode with limited range can be synthesized using

 

zero

 

 as the base in displacement addressing. (This register can be changed by
ALU operations in PowerPC; it is always 0 in the other machines.) Similarly, reg-
ister indirect addressing is synthesized by using displacement addressing with an
offset of 0. Simplified addressing modes is one distinguishing feature of RISC
architectures. 

Figure J.4 shows the data addressing modes supported by the embedded archi-
tectures. Unlike the desktop RISCs, these embedded machines do not reserve a reg-
ister to contain 0. Although most have two to three simple addressing modes, ARM
and SuperH have several, including fairly complex calculations. ARM has an
addressing mode that can shift one register by any amount, add it to the other regis-
ters to form the address, and then update one register with this new address. 

References to code are normally PC-relative, although jump register indirect
is supported for returning from procedures, for case statements, and for pointer
function calls. One variation is that PC-relative branch addresses are shifted left 2

 

Addressing mode Alpha MIPS64 PA-RISC 2.0 PowerPC SPARC v.9

 

Register + offset (displacement or based) X X X X X

Register + register (indexed) — X (FP) X (Loads) X X

Register + scaled register (scaled) — — X — —

Register + offset and update register — — X X —

Register + register and update register — — X X — 

 

Figure J.3

 

Summary of data addressing modes supported by the desktop architectures.

 

 PA-RISC also has short
address versions of the offset addressing modes. MIPS64 has indexed addressing for floating-point loads and stores.
(These addressing modes are described in Figure B.6 on page B-9.) 



 

J-6

 

�

 

Appendix J  

 

Survey of Instruction Set Architectures

 

bits before being added to the PC for the desktop RISCs, thereby increasing the
branch distance. This works because the length of all instructions for the desktop
RISCs is 32 bits and instructions must be aligned on 32-bit words in memory.
Embedded architectures with 16-bit-long instructions usually shift the PC-
relative address by 1 for similar reasons. 

Figure J.5 shows the format of the desktop RISC instructions, which includes
the size of the address in the instructions. Each instruction set architecture uses
these four primary instruction formats. Figure J.6 shows the six formats for the
embedded RISC machines. The desire to have smaller code size via 16-bit
instructions leads to more instruction formats. 

Figures J.7 and J.8 show the variations in extending constant fields to the full
width of the registers. In this subtle point, the RISCs are similar but not identical.

 

Instructions: The MIPS Core Subset

 

The similarities of each architecture allow simultaneous descriptions, starting
with the operations equivalent to the MIPS core. 

 

MIPS Core Instructions

 

Almost every instruction found in the MIPS core is found in the other architec-
tures, as Figures J.9 through J.13 show. (For reference, definitions of the MIPS
instructions are found in Section B.9.) Instructions are listed under four catego-
ries: data transfer (Figure J.9); arithmetic, logical (Figure J.10); control (Figure
J.11); and floating point (Figure J.12). A fifth category (Figure J.13) shows con-
ventions for register usage and pseudoinstructions on each architecture. If a

 

Addressing mode ARM v.4 Thumb SuperH M32R MIPS16

 

Register + offset (displacement or based) X X X X X

Register + register (indexed) X X X — —

Register + scaled register (scaled) X — — — —

Register + offset and update register X — — — —

Register + register and update register X — — — —

Register indirect — — X X —

Autoincrement, autodecrement X X X X —

PC-relative data X X (loads) X — X (loads)

 

Figure J.4

 

 

 

Summary of data addressing modes supported by the embedded architectures.

 

 SuperH and M32R
have separate register indirect and register + offset addressing modes rather than just putting 0 in the offset of the
latter mode. This increases the use of 16-bit instructions in the M32R, and it gives a wider set of address modes to dif-
ferent data transfer instructions in SuperH. To get greater addressing range, ARM and Thumb shift the offset left 1 or
2 bits if the data size is half word or word. (These addressing modes are described in Figure B.6 on page B-9.) 



 

J.2 A Survey of RISC Architectures for Desktop, Server, and Embedded Computers

 

�

 

J

 

-

 

7

 

Figure J.5

 

Instruction formats for desktop/server RISC architectures. 

 

These four formats are found in all five archi-
tectures. (The superscript notation in this figure means the width of a field in bits.) Although the register fields are
located in similar pieces of the instruction, be aware that the destination and two source fields are scrambled. Op =
the main opcode, Opx = an opcode extension, Rd = the destination register, Rs1 = source register 1, Rs2 = source reg-
ister 2, and Const = a constant (used as an immediate or as an address). Unlike the other RISCs, Alpha has a format for
immediates in arithmetic and logical operations that is different from the data transfer format shown here. It pro-
vides an 8-bit immediate in bits 20 to 13 of the RR format, with bits 12 to 5 remaining as an opcode extension. 

Opcode Register Constant

Alpha

MIPS

PowerPC

PA-RISC

SPARC

Alpha

MIPS

PowerPC

PA-RISC

SPARC

Alpha

MIPS

PowerPC

PA-RISC

SPARC

Alpha

MIPS

PowerPC

PA-RISC

SPARC

Register-register

Register-immediate

Branch

Jump/call

Op6

31 25 20 15 10 4 0

31 25 20 15 0

31 25

31 25 20

20 15 0

0

Rs15 Rs25

Rd5 Rs15 Const16

Const5

Rs15 Const21

Rs15 Opx5
/Rs25 Const16

Opx6

Opx3

Opx11

Rs15 Const14 Opx2

O C

Opx2

O1 C1

Rs25 Rs15 Const11

Const19

Const26

Const24

Const21

Const30

Const16

Const16

Rs15 Rd5

Rd5 Rs15

Rs25 Rd5

Rd5

Const16

Opx6 Rs15 1 Const13

Rs15 Rs25 Rd5

Rd5 Rs15

Rs15

Rs25 Opx11

Opx6

Opx11Rs15 Rs25 Rd5

Opx80Rd5 Opx6 Rs25

Op6

Op6

Op6

Op6

Op6

Op6

Op6

Op2

Op2

Op2

Op2

Op6

Op6

Op6

Op6

Op6

Op6

Op6

Op6

31 29 24 18 13 12 4 0

31 29 24 18 13 12 0

31 29 18 12 1 0

31 29 20 15 12 1 0

Rd5Opx11

Const21Rs15



 

J-8

 

�

 

Appendix J  

 

Survey of Instruction Set Architectures

 

Figure J.6

 

Instruction formats for embedded RISC architectures. 

 

These six formats are found in all five architec-
tures. The notation is the same as Figure J.5. Note the similarities in branch, jump, and call formats, and the diversity
in register-register, register-immediate, and data transfer formats. The differences result from whether the architec-
ture has 8 or 16 registers, whether it is a 2- or 3-operand format, and whether the instruction length is 16 or 32 bits. 

Const8

Opcode Register Constant

ARM

Thumb

SuperH

M32R

MIPS16

Register-register

Opx4

31 27 19 15 11 3 0

Op8 Rs14 Rd4

Opx4

Rd4

Rd4

Rd3

Op6

Op4

Op4

Op5

15 10 4 17 0

Rs24Opx8

Opx2Rs23Rs13

Rs4Opx4

Opx4Rs4

Rs3 Rd3

ARM

Thumb

SuperH

M32R

MIPS16

Data transfer

Opx4

31 27 19 15 11 0

Op3 Rs14 Rd4

Rs4

Rd4

Rd3

Op5 Const5

Op4

Op5

15 10 0

Const12

Rs4 Const16Opx4

Rs3 Rd3

Const4

ARM

Thumb

SuperH

M32R

MIPS16

Register-immediate

Opx4

31 27 19 15 11 0

Op3 Rs14 Rd4

Rd3

Rd4

Rd4

Rd3

Op5

Op4

Op4

Op5

15 10 47 0

Const12

Const5Rs3

Rs4 Const16Opx4

Const8

Const8

Branch

ARM

Thumb

SuperH

M32R

MIPS16

Jump

Opx4

31 27 23 0

Op4

Op5

Op4

Op5

15 10 0

Const24

Const11

Const8

Const11

Const12

ARM

Thumb

SuperH

M32R

MIPS16

Call

Opx4

31 27 23 0

Op4

Op5

Op4

Op8

Op6

15 25

Const24

Const26

Const8

Const11 Const11Opx5

Const12

ARM

Thumb

SuperH

M32R

MIPS16

Opx4

31 27 23 0

Op4

Rd4

Rd3

Op4 Opx4

Op8

Op4

Op5

15 10 7 0

Const24

Const8
Rs4 Const16Opx4

Const8

Const24

Op4 Rd4

Rs3 Const5

7 4

Op4 Opx4

0



 

J.2 A Survey of RISC Architectures for Desktop, Server, and Embedded Computers

 

�

 

J

 

-

 

9

 

MIPS core instruction requires a short sequence of instructions in other architec-
tures, these instructions are separated by semicolons in Figures J.9 through J.13.
(To avoid confusion, the destination register will always be the leftmost operand
in this appendix, independent of the notation normally used with each architec-
ture.) Figures J.14 through J.17 show the equivalent listing for embedded RISCs.
Note that floating point is generally not defined for the embedded RISCs. 

Every architecture must have a scheme for compare and conditional branch,
but despite all the similarities, each of these architectures has found a different
way to perform the operation. 

 

Compare and Conditional Branch

 

SPARC uses the traditional four condition code bits stored in the program sta-
tus word: 

 

negative, zero, carry,

 

 and 

 

overflow.

 

 They can be set on any arithmetic
or logical instruction; unlike earlier architectures, this setting is optional on
each instruction. An explicit option leads to fewer problems in pipelined imple-
mentation. Although condition codes can be set as a side effect of an operation,

 

Format: instruction category Alpha MIPS64 PA-RISC 2.0 PowerPC SPARC v.9

 

Branch: all Sign Sign Sign Sign Sign

Jump/call: all Sign — Sign Sign Sign

Register-immediate: data transfer Sign Sign Sign Sign Sign

Register-immediate: arithmetic Zero Sign Sign Sign Sign

Register-immediate: logical Zero Zero — Zero Sign 

 

Figure J.7

 

Summary of constant extension for desktop RISCs.

 

The constants in the jump and call instructions of
MIPS are not sign-extended since they only replace the lower 28 bits of the PC, leaving the upper 4 bits unchanged.
PA-RISC has no logical immediate instructions.

 

Format: instruction category ARM v.4 Thumb SuperH M32R MIPS16

 

Branch: all Sign Sign Sign Sign Sign

Jump/call: all Sign Sign/Zero Sign Sign —

Register-immediate: data transfer Zero Zero Zero Sign Zero

Register-immediate: arithmetic Zero Zero Sign Sign Zero/Sign

Register-immediate: logical Zero — Zero Zero —

 

Figure J.8

 

Summary of constant extension for embedded RISCs.

 

 The 16-bit-length instructions have much shorter
immediates than those of the desktop RISCs, typically only 5 to 8 bits. Most embedded RISCs, however, have a way to
get a long address for procedure calls from two sequential half words. The constants in the jump and call instructions
of MIPS are not sign-extended since they only replace the lower 28 bits of the PC, leaving the upper 4 bits
unchanged. The 8-bit immediates in ARM can be rotated right an even number of bits between 2 and 30, yielding a
large range of immediate values. For example, all powers of 2 are immediates in ARM. 



 

J-10

 

�

 

Appendix J  

 

Survey of Instruction Set Architectures

 

explicit compares are synthesized with a subtract using 

 

r0

 

 as the destination.
SPARC conditional branches test condition codes to determine all possible
unsigned and signed relations. Floating point uses separate condition codes to
encode the IEEE 754 conditions, requiring a floating-point compare instruc-
tion. Version 9 expanded SPARC branches in four ways: a separate set of con-
dition codes for 64-bit operations; a branch that tests the contents of a register
and branches if the value is =, not=, <, <=, >=, or <= 0 (see MIPS below); three
more sets of floating-point condition codes; and branch instructions that encode
static branch prediction. 

PowerPC also uses four condition codes: 

 

less than, greater than, equal,

 

 and

 

summary overflow,

 

 but it has eight copies of them. This redundancy allows the
PowerPC instructions to use different condition codes without conflict, essen-
tially giving PowerPC eight extra 4-bit registers. Any of these eight condition
codes can be the target of a compare instruction, and any can be the source of a

 

Data transfer  
(instruction formats) R-I R-I R-I, R-R R-I, R-R R-I, R-R 

Instruction name Alpha MIPS64 PA-RISC 2.0 PowerPC SPARC v.9 

 

Load byte signed

 

LDBU; SEXTB LB LDB; EXTRW,S 31,8 LBZ; EXTSB LDSB

 

Load byte unsigned

 

LDBU LBU LDB, LDBX, LDBS LBZ LDUB

 

Load half word signed

 

LDWU; SEXTW LH LDH; EXTRW,S 31,16 LHA LDSH

 

Load half word unsigned

 

LDWU LHU LDH, LDHX, LDHS LHZ LDUH

 

Load word

 

LDLS LW LDW, LDWX, LDWS LW LD

 

Load SP float

 

LDS* LWC1 FLDWX, FLDWS LFS LDF

 

Load DP float

 

LDT LDC1 FLDDX, FLDDS LFD LDDF

 

Store byte

 

STB SB STB, STBX, STBS STB STB

 

Store half word

 

STW SH STH, STHX, STHS STH STH

 

Store word

 

STL SW STW, STWX, STWS STW ST

 

Store SP float

 

STS SWC1 FSTWX, FSTWS STFS STF

 

Store DP float

 

STT SDC1 FSTDX, FSTDS STFD STDF

 

Read, write special registers MF_, MT_ MF, MT_ MFCTL, MTCTL MFSPR, MF_, 
MTSPR, MT_

RD, WR, RDPR,
WRPR, LDXFSR,
STXFSR

Move integer to FP register ITOFS MFC1/ 
DMFC1

STW; FLDWX STW; LDFS ST; LDF

Move FP to integer register FTTOIS MTC1/ 
DMTC1

FSTWX; LDW STFS; LW STF; LD 

Figure J.9 Desktop RISC data transfer instructions equivalent to MIPS core. A sequence of instructions to synthe-
size a MIPS instruction is shown separated by semicolons. If there are several choices of instructions equivalent to
MIPS core, they are separated by commas. For this figure, half word is 16 bits and word is 32 bits. Note that in Alpha,
LDS converts single-precision floating point to double precision and loads the entire 64-bit register. 



J.2 A Survey of RISC Architectures for Desktop, Server, and Embedded Computers � J-11

conditional branch. The integer instructions have an option bit that behaves as if
the integer op is followed by a compare to zero that sets the first condition “regis-
ter.” PowerPC also lets the second “register” be optionally set by floating-point
instructions. PowerPC provides logical operations among these eight 4-bit condi-
tion code registers (CRAND, CROR, CRXOR, CRNAND, CRNOR, CREQV), allowing more
complex conditions to be tested by a single branch. 

MIPS uses the contents of registers to evaluate conditional branches. Any two
registers can be compared for equality (BEQ) or inequality (BNE), and then the
branch is taken if the condition holds. The set-on-less-than instructions (SLT,
SLTI, SLTU, SLTIU) compare two operands and then set the destination register to
1 if less and to 0 otherwise. These instructions are enough to synthesize the full

Arithmetic/ logical  
(instruction formats) R-R, R-I R-R, R-I R-R, R-I R-R, R-I R-R, R-I 

Instruction name Alpha MIPS64 PA-RISC 2.0 PowerPC SPARC v.9 

Add ADDL ADDU, ADDU ADDL, LD0, ADDI, 
UADDCM

ADD, ADDI ADD

Add (trap if overflow) ADDLV ADD, ADDI ADDO, ADDIO ADDO; 
MCRXR; BC

ADDcc; TVS

Sub SUBL SUBU SUB, SUBI SUBF SUB

Sub (trap if overflow) SUBLV SUB SUBTO, SUBIO SUBF/oe SUBcc; TVS

Multiply MULL MULT,  
MULTU

SHiADD;...;  
(i=1,2,3)

MULLW,  
MULLI

MULX

Multiply (trap if overflow) MULLV — SHiADDO;...; — —

Divide — DIV, DIVU DS;...; DS DIVW DIVX

Divide (trap if overflow) — — — — —

And AND AND, ANDI AND AND, ANDI AND

Or BIS OR, ORI OR OR, ORI OR

Xor XOR XOR, XORI XOR XOR, XORI XOR

Load high part register LDAH LUI LDIL ADDIS SETHI (B fmt.)

Shift left logical SLL SLLV, SLL DEPW, Z 31-i,32-i RLWINM SLL

Shift right logical SRL SRLV, SRL EXTRW, U 31, 32-i RLWINM 32-i SRL

Shift right arithmetic SRA SRAV, SRA EXTRW, S 31, 32-i SRAW SRA

Compare CMPEQ, 
CMPLT, CMPLE

SLT/U, SLTI/U COMB CMP(I)CLR SUBcc r0,... 

Figure J.10 Desktop RISC arithmetic/logical instructions equivalent to MIPS core. Dashes mean the operation is
not available in that architecture, or not synthesized in a few instructions. Such a sequence of instructions is shown
separated by semicolons. If there are several choices of instructions equivalent to MIPS core, they are separated by
commas. Note that in the “Arithmetic/logical” category all machines but SPARC use separate instruction mnemonics
to indicate an immediate operand; SPARC offers immediate versions of these instructions but uses a single mne-
monic. (Of course these are separate opcodes!) 



J-12 � Appendix J  Survey of Instruction Set Architectures

set of relations. Because of the popularity of comparisons to 0, MIPS includes
special compare-and-branch instructions for all such comparisons: greater than or
equal to zero (BGEZ), greater than zero (BGTZ), less than or equal to zero (BLEZ),
and less than zero (BLTZ). Of course, equal and not equal to zero can be synthe-
sized using r0 with BEQ and BNE. Like SPARC, MIPS I uses a condition code for
floating point with separate floating-point compare and branch instructions;
MIPS IV expanded this to eight floating-point condition codes, with the floating-
point comparisons and branch instructions specifying the condition to set or test. 

Alpha compares (CMPEQ, CMPLT, CMPLE, CMPULT, CMPULE) test two registers
and set a third to 1 if the condition is true and to 0 otherwise. Floating-point com-
pares (CMTEQ, CMTLT, CMTLE, CMTUN) set the result to 2.0 if the condition holds
and to 0 otherwise. The branch instructions compare one register to 0 (BEQ, BGE,
BGT, BLE, BLT, BNE) or its least-significant bit to 0 (BLBC, BLBS) and then branch if
the condition holds. 

PA-RISC has many branch options, which we’ll see in the section “Instruc-
tions Unique to Alpha” on page J-27. The most straightforward is a compare and
branch instruction (COMB), which compares two registers, branches depending on
the standard relations, and then tests the least-significant bit of the result of the
comparison. 

ARM is similar to SPARC, in that it provides four traditional condition codes
that are optionally set. CMP subtracts one operand from the other and the differ-
ence sets the condition codes. Compare negative (CMN) adds one operand to the
other, and the sum sets the condition codes. TST performs logical AND on the
two operands to set all condition codes but overflow, while TEQ uses exclusive

Control  
(instruction formats) B, J/C B, J/C B, J/C B, J/C B, J/C 

Instruction name Alpha MIPS64 PA-RISC 2.0 PowerPC SPARC v.9 

Branch on integer  
compare

B_  
(<, >, <=, 
>=, =, not=)

BEQ, BNE, 
B_Z (<, >, 
<=, >=)

COMB, COMIB BC BR_Z, BPcc (<, >,
<=, >=, =, not=)

Branch on floating-point 
compare

FB_(<, >, 
<=, >=, =, 
not=)

BC1T, 
BC1F

FSTWX f0; 
LDW t;
BB t

BC FBPfcc (<, >, <=,
>=, =,...)

Jump, jump register BR, JMP J, JR BL r0, BLR r0 B, BCLR, BCCTR BA, JMPL r0,...

Call, call register BSR JAL, JALR BL, BLE BL, BLA, 
BCLRL, BCCTRL

CALL, JMPL

Trap CALL_PAL 
GENTRAP

BREAK BREAK TW, TWI Ticc, SIR

Return from interrupt CALL_PAL 
REI

JR; ERET RFI, RFIR RFI DONE, RETRY,
RETURN 

Figure J.11 Desktop RISC control instructions equivalent to MIPS core. If there are several choices of instructions
equivalent to MIPS core, they are separated by commas. 



J.2 A Survey of RISC Architectures for Desktop, Server, and Embedded Computers � J-13

OR to set the first three condition codes. Like SPARC, the conditional version of
the ARM branch instruction tests condition codes to determine all possible
unsigned and signed relations. As we shall see in the section “Instructions Unique
to SPARC v.9” on page J-29, one unusual feature of ARM is that every instruc-
tion has the option of executing conditionally depending on the condition codes.

Floating point  (instruction formats) R-R R-R R-R R-R R-R 

Instruction name Alpha MIPS64 PA-RISC 2.0 PowerPC SPARC v.9

Add single, double ADDS, ADDT ADD.S,  
ADD.D

FADD 
FADD/dbl

FADDS,  
FADD

FADDS, 
FADDD

Subtract single, double SUBS, SUBT SUB.S, SUB.D FSUB 
FSUB/dbl

FSUBS,  
FSUB

FSUBS, 
FSUBD

Multiply single, double MULS, MULT MUL.S, MUL.D FMPY 
FMPY/dbl

FMULS,  
FMUL

FMULS, 
FMULD

Divide single, double DIVS, DIVT DIV.S, DIV.D FDIV, 
FDIV/dbl

FDIVS, 
FDIV

FDIVS, 
FDIVD

Compare CMPT_ 
(=, <, 
<=, UN)

C_.S, C_.D 
(<, >, <=, 
>=, =,...)

FCMP, FCMP/dbl 
(<, =, >)

FCMP FCMPS,  
FCMPD

Move R-R ADDT Fd, 
F31, Fs

MOV.S, MOV.D FCPY FMV FMOVS/D/Q

Convert (single, double, integer) 
to (single, double, integer)

CVTST,  
CVTTS,  
CVTTQ,  
CVTQS,  
CVTQT

CVT.S.D,  
CVT.D.S,  
CVT.S.W,  
CVT.D.W,  
CVT.W.S,  
CVT.W.D

FCNVFF,s,d  
FCNVFF,d,s  
FCNVXF,s,s  
FCNVXF,d,d  
FCNVFX,s,s  
FCNVFX,d,s

—,  
FRSP,  
—,  
FCTIW,  
—,  
—

FSTOD, 
FDTOS, 
FSTOI, 
FDTOI, 
FITOS, 
FITOD 

Figure J.12 Desktop RISC floating-point instructions equivalent to MIPS core. Dashes mean the operation is not
available in that architecture, or not synthesized in a few instructions. If there are several choices of instructions
equivalent to MIPS core, they are separated by commas. 

Conventions Alpha MIPS64 PA-RISC 2.0 PowerPC SPARC v.9 

Register with value 0 r31 (source) r0 r0 r0 (addressing) r0

Return address register (any) r31 r2, r31 link (special) r31

No-op LDQ_U r31,... SLL r0, r0,
r0

OR r0, r0, r0 ORI r0, r0, #0 SETHI r0, 0

Move R-R integer BIS..., r31,... ADD..., 
r0,...

OR..., r0,... OR rx, ry, ry OR..., 
r0,...

Operand order OP Rs1, Rs2, 
Rd

OP Rd, Rs1,
Rs2

OP Rs1, Rs2, 
Rd

OP Rd, Rs1, 
Rs2

OP Rs1, Rs2, 
Rd 

Figure J.13 Conventions of desktop RISC architectures equivalent to MIPS core. 



J-14 � Appendix J  Survey of Instruction Set Architectures

(This bears similarities to the annulling option of PA-RISC, seen in the section
“Instructions Unique to Alpha” on page J-27.) 

Not surprisingly, Thumb follows ARM. Differences are that setting condition
codes are not optional, the TEQ instruction is dropped, and there is no conditional
execution of instructions. 

The Hitachi SuperH uses a single T-bit condition that is set by compare
instructions. Two branch instructions decide to branch if either the T bit is 1 (BT)
or the T bit is 0 (BF). The two flavors of branches allow fewer comparison
instructions. 

Mitsubishi M32R also offers a single condition code bit (C) used for signed
and unsigned comparisons (CMP, CMPI, CMPU, CMPUI) to see if one register is less
than the other or not, similar to the MIPS set-on-less-than instructions. Two
branch instructions test to see if the C bit is 1 or 0: BC and BNC. The M32R also
includes instructions to branch on equality or inequality of registers (BEQ and
BNE) and all relations of a register to 0 (BGEZ, BGTZ, BLEZ, BLTZ, BEQZ, BNEZ).
Unlike BC and BNC, these last instructions are all 32 bits wide. 

MIPS16 keeps set-on-less-than instructions (SLT, SLTI, SLTU, SLTIU), but
instead of putting the result in one of the eight registers, it is placed in a special
register named T. MIPS16 is always implemented in machines that also have the
full 32-bit MIPS instructions and registers; hence, register T is really register 24

Instruction name ARM v.4 Thumb SuperH M32R MIPS16 

Data transfer  (instruction formats) DT DT DT DT DT 

Load byte signed LDRSB LDRSB MOV.B LDB LB

Load byte unsigned LDRB LDRB MOV.B; EXTU.B LDUB LBU

Load half word signed LDRSH LDRSH MOV.W LDH LH

Load half word unsigned LDRH LDRH MOV.W; EXTU.W LDUH LHU

Load word LDR LDR MOV.L LD LW

Store byte STRB STRB MOV.B STB SB

Store half word STRH STRH MOV.W STH SH

Store word STR STR MOV.L ST SW

Read, write special registers MRS, MSR —1 LDC, STC MVFC, MVTC MOVE 

Figure J.14 Embedded RISC data transfer instructions equivalent to MIPS core. A sequence of instructions to syn-
thesize a MIPS instruction is shown separated by semicolons. Note that floating point is generally not defined for the
embedded RISCs. Thumb and MIPS16 are just 16-bit instruction subsets of the ARM and MIPS architectures, so
machines can switch modes and execute the full instruction set. We use —1 to show sequences that are available in
32-bit mode but not 16-bit mode in Thumb or MIPS16.



J.2 A Survey of RISC Architectures for Desktop, Server, and Embedded Computers � J-15

in the full MIPS architecture. The MIPS16 branch instructions test to see if a reg-
ister is or is not equal to zero (BEQZ and BNEZ). There are also instructions that
branch if register T is or is not equal to zero (BTEQZ and BTNEZ). To test if two
registers are equal, MIPS added compare instructions (CMP, CMPI) that compute
the exclusive OR of two registers and place the result in register T. Compare was

Arithmetic/ logical  
(instruction formats) R-R, R-I R-R, R-I R-R, R-I R-R, R-I R-R, R-I 

Instruction name ARM v.4 Thumb SuperH M32R MIPS16 

Add ADD ADD ADD ADD, ADDI, 
ADD3

ADDU, ADDIU

Add (trap if overflow) ADDS; SWIVS ADD; BVC 
.+4; SWI

ADDV ADDV, ADDV3 —1

Subtract SUB SUB SUB SUB SUBU

Subtract (trap if overflow) SUBS; SWIVS SUB; BVC 
.+1; SWI

SUBV SUBV —1

Multiply MUL MUL MUL MUL MULT, MULTU

Multiply (trap if overflow)     —

Divide — — DIV1, DIVoS, 
DIVoU

DIV, DIVU DIV, DIVU

Divide (trap if overflow) — —   —

And AND AND AND AND, AND3 AND

Or ORR ORR OR OR, OR3 OR

Xor EOR EOR XOR XOR, XOR3 XOR

Load high part register — —  SETH —1

Shift left logical LSL3 LSL2 SHLL, SHLLn SLL, SLLI, 
SLL3

SLLV, SLL

Shift right logical LSR3 LSR2 SHRL, SHRLn SRL, SRLI, 
SRL3

SRLV, SRL

Shift right arithmetic ASR3 ASR2 SHRA, SHAD SRA, SRAI, 
SRA3

SRAV, SRA

Compare CMP,CMN, 
TST,TEQ

CMP, CMN, 
TST

CMP/cond, TST CMP/I, CMPU/I CMP/I2, 
SLT/I,  
SLT/IU 

Figure J.15  Embedded RISC arithmetic/logical instructions equivalent to MIPS core. Dashes mean the operation
is not available in that architecture, or not synthesized in a few instructions. Such a sequence of instructions is shown
separated by semicolons. If there are several choices of instructions equivalent to MIPS core, they are separated by
commas. Thumb and MIPS16 are just 16-bit instruction subsets of the ARM and MIPS architectures, so machines can
switch modes and execute the full instruction set. We use —1 to show sequences that are available in 32-bit mode
but not 16-bit mode in Thumb or MIPS16. The superscript 2 shows new instructions found only in 16-bit mode of
Thumb or MIPS16, such as CMP/I2. ARM includes shifts as part of every data operation instruction, so the shifts with
superscript 3 are just a variation of a move instruction, such as LSR3. 



J-16 � Appendix J  Survey of Instruction Set Architectures

added since MIPS16 left out instructions to compare and branch if registers are
equal or not (BEQ and BNE). 

Figures J.18 and J.19 summarize the schemes used for conditional branches. 

Instructions: Multimedia Extensions of the Desktop/Server 
RISCs

Since every desktop microprocessor by definition has its own graphical displays,
as transistor budgets increased it was inevitable that support would be added for
graphics operations. Many graphics systems use 8 bits to represent each of the
three primary colors plus 8 bits for a location of a pixel. 

The addition of speakers and microphones for teleconferencing and video
games suggested support of sound as well. Audio samples need more than 8 bits
of precision, but 16 bits are sufficient. 

Every microprocessor has special support so that bytes and half words take
up less space when stored in memory, but due to the infrequency of arithmetic
operations on these data sizes in typical integer programs, there is little support
beyond data transfers. The architects of the Intel i860, which was justified as a
graphical accelerator within the company, recognized that many graphics and

Control  (instruction formats) B, J, C B, J, C B, J, C B, J, C B, J, C 

Instruction name ARM v.4 Thumb SuperH M32R MIPS16 

Branch on integer compare B/cond B/cond BF, BT BEQ, BNE, 
BC,BNC, B__Z

BEQZ2, BNEZ2,
BTEQZ2, BTNEZ2

Jump, jump register MOV pc,ri MOV pc,ri BRA, JMP BRA, JMP B2, JR

Call, call register BL BL BSR, JSR BL, JL JAL, JALR, JALX2
Trap SWI SWI TRAPA TRAP BREAK

Return from interrupt MOVS pc, 
r14

—1 RTS RTE —1 

Figure J.16 Embedded RISC control instructions equivalent to MIPS core. Thumb and MIPS16 are just 16-bit
instruction subsets of the ARM and MIPS architectures, so machines can switch modes and execute the full instruc-
tion set. We use —1 to show sequences that are available in 32-bit mode but not 16-bit mode in Thumb or MIPS16.
The superscript 2 shows new instructions found only in 16-bit mode of Thumb or MIPS16, such as BTEQZ2.

Conventions ARM v.4 Thumb SuperH M32R MIPS16 

Return address reg. R14 R14 PR (special) R14 RA (special)

No-op MOV r0,r0 MOV r0,r0 NOP NOP SLL r0, r0

Operands, order OP Rd, Rs1, Rs2 OP Rd, Rs1 OP Rs1, Rd OP Rd, Rs1 OP Rd, Rs1, Rs2 

Figure J.17 Conventions of embedded RISC instructions equivalent to MIPS core. 



J.2 A Survey of RISC Architectures for Desktop, Server, and Embedded Computers � J-17

audio applications would perform the same operation on vectors of these data.
Although a vector unit was beyond the transistor budget of the i860 in 1989, by
partitioning the carry chains within a 64-bit ALU (see Section I.8), it could per-
form simultaneous operations on short vectors of eight 8-bit operands, four 16-bit
operands, or two 32-bit operands. The cost of such partitioned ALUs was small.
Applications that lend themselves to such support include MPEG (video), games
like DOOM (3D graphics), Adobe Photoshop (digital photography), and telecon-
ferencing (audio and image processing). 

Like a virus, over time such multimedia support has spread to nearly every
desktop microprocessor. HP was the first successful desktop RISC to include such
support. As we shall see, this virus spread unevenly. IBM split multimedia support.
The PowerPC offers the active instructions, but the Power version does not.

These extensions have been called subword parallelism, vector, or SIMD
(single instruction, multiple data) (see Appendix B). Since Intel marketing used
SIMD to describe the MMX extension of the 80x86, that has become the popular
name. Figure J.20 summarizes the support by architecture. 

 Alpha MIPS64 PA-RISC 2.0 PowerPC SPARC v.9 

Number of condition code bits  
(integer and FP)

0 8 FP 8 FP 8 × 4 both 2 × 4 integer,
4 × 2 FP

Basic compare instructions  
(integer and FP)

1 integer, 
1 FP

1 integer, 1 FP 4 integer, 2 FP 4 integer, 2 FP 1 FP

Basic branch instructions  
(integer and FP)

1 2 integer, 1 FP 7 integer 1 both 3 integer,
1 FP

Compare register with register/  
const and branch

— =, not= =, not=, <, <=, >, 
>=, even, odd

— —

Compare register to zero and  
branch

=, not=, <, 
<=, >, >=, 
even, odd

=, not=, <, <=, 
>, >=

=, not=, <, <=, >, 
>=, even, odd

— =, not=, <, 
<=, >, >=

Figure J.18 Summary of five desktop RISC approaches to conditional branches. Floating-point branch on PA-RISC
is accomplished by copying the FP status register into an integer register and then using the branch on bit instruc-
tion to test the FP comparison bit. Integer compare on SPARC is synthesized with an arithmetic instruction that sets
the condition codes using r0 as the destination.

 ARM v.4 Thumb SuperH M32R MIPS16

Number of condition code bits 4 4 1 1 1

Basic compare instructions 4 3 2 2 2

Basic branch instructions 1 1 2 3 2

Compare register with register/const and 
branch

— — =, >, >= =, not= —

Compare register to zero and branch — —  =, >, >= =, not=, <, <=, >, >= =, not= 

Figure J.19 Summary of five embedded RISC approaches to conditional branches. 



J-18 � Appendix J  Survey of Instruction Set Architectures

From Figure J.20 you can see that in general MIPS MDMX works on 8 bytes
or 4 half words per instruction, HP PA-RISC MAX2 works on 4 half words,
SPARC VIS works on 4 half words or 2 words, and Alpha doesn’t do much. The
Alpha MAX operations are just byte versions of compare, min, max, and abso-
lute difference, leaving it up to software to isolate fields and perform parallel
adds, subtracts, and multiplies on bytes and half words. MIPS also added opera-
tions to work on two 32-bit floating-point operands per cycle, but they are consid-
ered part of MIPS V and not simply multimedia extensions (see the section
“Instructions Unique to MIPS64” on page J-24). 

One feature not generally found in general-purpose microprocessors is satu-
rating operations. Saturation means that when a calculation overflows, the result
is set to the largest positive number or most negative number, rather tha a modulo

Instruction category Alpha MAX MIPS MDMX PA-RISC MAX2
PowerPC 
ActiveC SPARC VIS 

Add/subtract  8B, 4H 4H 16B, 8H, 4W 4H, 2W

Saturating add/sub  8B, 4H 4H 16B, 8H, 4W  

Multiply  8B, 4H  16B, 8H, 4W 4B/H

Compare 8B (>=) 8B, 4H (=,<,<=)  16B, 8H, 4W 4H, 2W 
(=, not=, >, <=)

Shift right/left  8B, 4H 4H 16B, 8H, 4W  

Shift right arithmetic  4H 4H 16B, 8H, 4W  

Multiply and add  8B, 4H 16B, 8H, 4W  

Shift and add 
(saturating)

  4H   

And/or/xor 8B, 4H, 2W 8B, 4H, 2W 8B, 4H, 2W 16B, 8H, 4W 8B, 4H, 2W

Absolute difference 8B    8B

Max/min 8B, 4W 8B, 4H  16B, 8H, 4W  

Pack (2n bits --> n bits) 2W->2B, 4H->4B 2*2W->4H,  
2*4H->8B

2*4H->8B 4W->4H,
8H->8B,
4W->4B

2W->2H,  
2W->2B, 
4H->4B

Unpack/merge 2B->2W, 4B->4H 2*4B->8B,  
2*2H->4H

 4H->4W,
8B->8H

4B->4H,  
2*4B->8B

Permute/shuffle  8B, 4H 4H 16B, 8H, 4W  

Register sets Integer Fl. Pt. + 192b Acc. Integer 32x128b Fl. Pt. 

Figure J.20 Summary of multimedia support for desktop RISCs. B stands for byte (8 bits), H for half word (16 bits),
and W for word (32 bits). Thus 8B means an operation on 8 bytes in a single instruction. Pack and unpack use the
notation 2*2W to mean 2 operands each with 2 words. Note that MDMX has vector/scalar operations, where the sca-
lar is specified as an element of one of the vector registers. This table is a simplification of the full multimedia archi-
tectures, leaving out many details. For example, MIPS MDMX includes instructions to multiplex between two
operands, HP MAX2 includes an instruction to calculate averages, and SPARC VIS includes instructions to set registers
to constants. Also, this table does not include the memory alignment operation of MDMX, MAX, and VIS. 



J.2 A Survey of RISC Architectures for Desktop, Server, and Embedded Computers � J-19

calculation as in two’s complement arithmetic. Commonly found in digital signal
processors (see the next subsection), these saturating operations are helpful in
routines for filtering. 

These machines largely used existing register sets to hold operands: integer
registers for Alpha and HP PA-RISC and floating-point registers for MIPS and
Sun. Hence data transfers are accomplished with standard load and store instruc-
tions. PowerPC ActiveC added 32 128-bit registers. MIPS also added a 192-bit (3
* 64) wide register to act as an accumulator for some operations. By having 3
times the native data width, it can be partitioned to accumulate either 8 bytes with
24 bits per field or 4 half words with 48 bits per field. This wide accumulator can
be used for add, subtract, and multiply/add instructions. MIPS claims perfor-
mance advantages of 2 to 4 times for the accumulator. 

Perhaps the surprising conclusion of this table is the lack of consistency. The
only operations found on all four are the logical operations (AND, OR, XOR), which
do not need a partitioned ALU. If we leave out the frugal Alpha, then the only
other common operations are parallel adds and subtracts on 4 half words. 

Each manufacturer states that these are instructions intended to be used in
hand-optimized subroutine libraries, an intention likely to be followed, as a com-
piler that works well with all desktop RISCs’ multimedia extensions would be
challenging.

Instructions: Digital Signal-Processing Extensions of the 
Embedded RISCs

One feature found in every digital signal processor (DSP) architecture is support
for integer multiply-accumulate. The multiplies tend to be on shorter words than
regular integers, such as 16 bits, and the accumulator tends to be on longer
words, such as 64 bits. The reason for multiply-accumulate is to efficiently
implement digital filters, common in DSP applications. Since Thumb and
MIPS16 are subset architectures, they do not provide such support. Instead, pro-
grammers should use the DSP or multimedia extensions found in the 32-bit mode
instructions of ARM and MIPS64. 

Figure J.21 shows the size of the multiply, the size of the accumulator, and
the operations and instruction names for the embedded RISCs. Machines with
accumulator sizes greater than 32 and less than 64 bits will force the upper bits to
remain as the sign bits, thereby “saturating” the add to set to maximum and mini-
mum fixed-point values if the operations overflow. 

Instructions: Common Extensions to MIPS Core

Figures J.22 through J.28 list instructions not found in Figures J.9 through J.17 in
the same four categories. Instructions are put in these lists if they appear in more
than one of the standard architectures. The instructions are defined using the
hardware description language defined in Figure J.29. 



J-20 � Appendix J  Survey of Instruction Set Architectures

Although most of the categories are self-explanatory, a few bear comment: 

� The “atomic swap” row means a primitive that can exchange a register with
memory without interruption. This is useful for operating system sema-
phores in a uniprocessor as well as for multiprocessor synchronization (see
Section 4.5). 

� The 64-bit data transfer and operation rows show how MIPS, PowerPC, and
SPARC define 64-bit addressing and integer operations. SPARC simply
defines all register and addressing operations to be 64 bits, adding only spe-
cial instructions for 64-bit shifts, data transfers, and branches. MIPS includes
the same extensions, plus it adds separate 64-bit signed arithmetic instruc-
tions. PowerPC adds 64-bit right shift, load, store, divide, and compare and
has a separate mode determining whether instructions are interpreted as 32-
or 64-bit operations; 64-bit operations will not work in a machine that only
supports 32-bit mode. PA-RISC is expanded to 64-bit addressing and opera-
tions in version 2.0. 

� The “prefetch” instruction supplies an address and hint to the implementa-
tion about the data. Hints include whether the data is likely to be read or
written soon, likely to be read or written only once, or likely to be read or
written many times. Prefetch does not cause exceptions. MIPS has a version
that adds two registers to get the address for floating-point programs, unlike
non-floating-point MIPS programs. (See Chapter 5 to learn more about
prefetching.) 

� In the “Endian” row, “Big/Little” means there is a bit in the program status
register that allows the processor to act either as Big Endian or Little Endian

 ARM v.4 Thumb SuperH M32R MIPS16

Size of multiply 32B × 32B — 32B × 32B, 16B × 16B 32B × 16B, 16B × 16B —

Size of accumulator 32B/64B — 32B/42B, 48B/64B 56B —

Accumulator name Any GPR or pairs 
of GPRs

— MACH, MACL ACC —

Operations 32B/64B product + 
64B accumulate  
signed/unsigned

— 32B product + 42B/32B 
accumulate (operands in 
memory); 64B product + 
64B/48B accumulate 
(operands in memory); 
clear MAC

32B/48B product + 64B 
accumulate, round, move

—

Corresponding 
instruction names

MLA, SMLAL, UMLAL — MAC, MACS, MAC.L, 
MAC.LS, CLRMAC

MACHI/MACLO, 
MACWHI/MACWLO, 
RAC, RACH, 
MVFACHI/MVFACLO, 
MVTACHI/MVTACLO

—

Figure J.21 Summary of five embedded RISC approaches to multiply-accumulate. 



J.2 A Survey of RISC Architectures for Desktop, Server, and Embedded Computers � J-21

(see Section B.3). This can be accomplished by simply complementing some
of the least-significant bits of the address in data transfer instructions. 

� The “shared-memory synchronization” helps with cache-coherent multipro-
cessors: All loads and stores executed before the instruction must complete
before loads and stores after it can start. (See Chapter 4.) 

� The “coprocessor operations” row lists several categories that allow for the
processor to be extended with special-purpose hardware. 

One difference that needs a longer explanation is the optimized branches.
Figure J.30 shows the options. The Alpha and PowerPC offer branches that take
effect immediately, like branches on earlier architectures. To accelerate branches,
these machines use branch prediction (see Section 2.3). All the rest of the desktop
RISCs offer delayed branches (see Appendix A). The embedded RISCs generally
do not support delayed branch, with the exception of SuperH, which has it as an
option. 

Name Definition Alpha MIPS64 PA-RISC 2.0 PowerPC SPARC v.9

Atomic swap R/M 
(for locks and 
semaphores)

Temp<---Rd;  
Rd<---Mem[x];  
Mem[x]<---Temp

LDL/Q_L; 
STL/Q_C

LL; SC — 
(see Fig. J.8)

LWARX;  
STWCX

CASA, CASX

Load 64-bit integer Rd<---64 Mem[x] LDQ LD LDD LD LDX

Store 64-bit integer Mem[x]<---64 Rd STQ SD STD STD STX

Load 32-bit integer 
unsigned

Rd32..63<---32 Mem[x];  
Rd0..31<---32 0

LDL; EXTLL LWU LDW LWZ LDUW

Load 32-bit integer 
signed

Rd32..63<---32 Mem[x];  
Rd0..31<---32 Mem[x]0

32
LDL LW LDW; EXTRD,S 

63, 8
LWA LDSW

Prefetch Cache[x]<---hint FETCH, 
FETCH_M*

PREF, 
PREFX

LDD, r0 
LDW, r0

DCBT,  
DCBTST

PRE-FETCH

Load coprocessor Coprocessor<--- Mem[x] — LWCi CLDWX, CLDWS — —

Store coprocessor Mem[x]<--- Coprocessor — SWCi CSTWX, CSTWS — —

Endian (Big/Little Endian?) Either Either Either Either Either

Cache flush (Flush cache block at this 
address)

ECB CP0op FDC, FIC DCBF FLUSH

Shared-memory 
synchronization

(All prior data transfers 
complete before next data 
transfer may start)

WMB SYNC SYNC SYNC MEMBAR 

Figure J.22  Data transfer instructions not found in MIPS core but found in two or more of the five desktop archi-
tectures. The load linked/store conditional pair of instructions gives Alpha and MIPS atomic operations for sema-
phores, allowing data to be read from memory, modified, and stored without fear of interrupts or other machines
accessing the data in a multiprocessor (see Chapter 4). Prefetching in the Alpha to external caches is accomplished
with FETCH and FETCH_M; on-chip cache prefetches use LD_Q A, R31, and LD_Y A. F31 is used in the Alpha 21164 (see
Bhandarkar [1995], p. 190). 



J-22 � Appendix J  Survey of Instruction Set Architectures

The other three desktop RISCs provide a version of delayed branch that
makes it easier to fill the delay slot. The SPARC “annulling” branch executes the
instruction in the delay slot only if the branch is taken; otherwise the instruction
is annulled. This means the instruction at the target of the branch can safely be
copied into the delay slot since it will only be executed if the branch is taken. The

Name Definition Alpha MIPS64 PA-RISC 2.0 PowerPC SPARC v.9

64-bit integer 
arithmetic ops

Rd<---64Rs1 op64 Rs2 ADD, 
SUB, MUL

DADD, DSUB  
DMULT, DDIV

ADD, SUB, 
SHLADD, DS

ADD, SUBF, 
MULLD, 
DIVD

ADD, SUB,
MULX, 
S/UDIVX

64-bit integer logical 
ops

Rd<---64Rs1 op64 Rs2 AND, OR, 
XOR

AND, OR, 
XOR

AND, OR, 
XOR

AND, OR, 
XOR

AND, OR,
XOR

64-bit shifts Rd<---64Rs1 op64 Rs2 SLL, 
SRA, 
SRL

DSLL/V, 
DSRA/V, 
DSRL/V

DEPD,Z 
EXTRD,S  
EXTRD,U

SLD, SRAD, 
SRLD

SLLX, 
SRAX, 
SRLX

Conditional move if (cond) Rd<---Rs CMOV_ MOVN/Z SUBc, n; 
ADD

— MOVcc, 
MOVr

Support for multiword 
integer add

CarryOut, Rd <--- Rs1 
+ Rs2 + OldCarryOut

— ADU; SLTU; 
ADDU, DADU; 
SLTU; DADDU

ADDC ADDC, ADDE ADDcc

Support for multiword 
integer sub

CarryOut, Rd <--- Rs1  
Rs2 + OldCarryOut

— SUBU; SLTU; 
SUBU, DSUBU; 
SLTU; DSUBU

SUBB SUBFC, 
SUBFE

SUBcc

And not Rd <--- Rs1 & ~(Rs2) BIC — ANDCM ANDC ANDN

Or not Rd <--- Rs1 | ~(Rs2) ORNOT — — ORC ORN

Add high immediate Rd0..15<---Rs10..15 +  
(Const<<16);

— — ADDIL 
(R-I)

ADDIS  
(R-I)

—

Coprocessor  
operations

(Defined by 
coprocessor)

— COPi COPR,i — IMPDEPi 

Figure J.23 Arithmetic/logical instructions not found in MIPS core but found in two or more of the five desktop
architectures.

Name Definition Alpha MIPS64 PA-RISC 2.0 PowerPC SPARC v.9

Optimized delayed 
branches

(Branch not always 
delayed)

— BEQL, BNEL, B_ZL 
(<, >, <=, >=)

COMBT, n, 
COMBF, n

— BPcc, A,
FPBcc, A

Conditional trap if (COND) {R31<---PC; 
PC <---0..0#i}

— T_,T_I (=, not=, 
<, >, <=, >=)

SUBc, n; 
BREAK

TW, TD, 
TWI, TDI

Tcc

No. control registers Misc. regs (virtual  
memory, interrupts, . . .)

6 equiv. 12 32 33 29 

Figure J.24 Control instructions not found in MIPS core but found in two or more of the five desktop archi-
tectures.



J.2 A Survey of RISC Architectures for Desktop, Server, and Embedded Computers � J-23

restrictions are that the target is not another branch and that the target is known at
compile time. (SPARC also offers a nondelayed jump because an unconditional
branch with the annul bit set does not execute the following instruction.) Later
versions of the MIPS architecture have added a branch likely instruction that also
annuls the following instruction if the branch is not taken. PA-RISC allows
almost any instruction to annul the next instruction, including branches. Its “nul-
lifying” branch option will execute the next instruction depending on the direc-
tion of the branch and whether it is taken (i.e., if a forward branch is not taken or
a backward branch is taken). Presumably this choice was made to optimize loops,
allowing the instructions following the exit branch and the looping branch to exe-
cute in the common case. 

Now that we have covered the similarities, we will focus on the unique fea-
tures of each architecture. We first cover the desktop/server RISCs, ordering them

Name Definition Alpha MIPS64 PA-RISC 2.0 PowerPC SPARC v.9

Multiply and add Fd <--- ( Fs1 × Fs2) + Fs3 — MADD.S/D FMPYFADD sgl/
dbl

FMADD/S  

Multiply and sub Fd <--- ( Fs1 × Fs2) – Fs3 — MSUB.S/D FMSUB/S  

Neg mult and add Fd <--- -(( Fs1 × Fs2) + Fs3) — NMADD.S/D FMPYFNEG sgl/
dbl

FNMADD/S  

Neg mult and sub Fd <--- -(( Fs1 × Fs2) – Fs3) — NMSUB.S/D  FNMSUB/S  

Square root Fd <--- SQRT(Fs) SQRT_ SQRT.S/D FSQRT sgl/dbl FSQRT/S FSQRTS/D

Conditional move if (cond) Fd<---Fs FCMOV_ MOVF/T, 
MOVF/T.S/D

FTESTFCPY — FMOVcc

Negate Fd <--- Fs ^ x80000000 CPYSN NEG.S/D FNEG sgl/dbl FNEG FNEGS/D/Q

Absolute value Fd <--- Fs & x7FFFFFFF — ABS.S/D FABS/dbl FABS FABSS/
D/Q 

Figure J.25 Floating-point instructions not found in MIPS core but found in two or more of the five desktop
architectures. 

Name Definition ARM v.4 Thumb SuperH M32R MIPS16

Atomic swap R/M  
(for semaphores)

Temp<---Rd;  
Rd<---Mem[x];  
Mem[x]<---Temp

SWP, SWPB —1 (see TAS) LOCK; 
UNLOCK

—1

Memory management 
unit

Paged address translation Via  coprocessor 
instructions

—1 LDTLB  —1

Endian (Big/Little Endian?) Either Either Either Big Either 

Figure J.26 Data transfer instructions not found in MIPS core but found in two or more of the five embedded
architectures.We use —1 to show sequences that are available in 32-bit mode but not 16-bit mode in Thumb or
MIPS16. 



J-24 � Appendix J  Survey of Instruction Set Architectures

by length of description of the unique features from shortest to longest, and then
the embedded RISCs. 

Instructions Unique to MIPS64

MIPS has gone through five generations of instruction sets, and this evolution has
generally added features found in other architectures. Here are the salient unique
features of MIPS, the first several of which were found in the original instruction
set. 

Nonaligned Data Transfers

MIPS has special instructions to handle misaligned words in memory. A rare
event in most programs, it is included for supporting 16-bit minicomputer
applications and for doing memcpy and strcpy faster. Although most RISCs
trap if you try to load a word or store a word to a misaligned address, on all
architectures misaligned words can be accessed without traps by using four
load byte instructions and then assembling the result using shifts and logical
ors. The MIPS load and store word left and right nstructions (LWL, LWR, SWL,

Name Definition ARM v.4 Thumb SuperH M32R MIPS16 

Load immediate Rd<---Imm MOV MOV MOV, MOVA LDI, LD24 LI

Support for multiword 
integer add

CarryOut, Rd <--- Rd + Rs1 + 
OldCarryOut

ADCS ADC ADDC ADDX —1

Support for multiword 
integer sub

CarryOut, Rd <--- Rd – Rs1 + 
OldCarryOut

SBCS SBC SUBC SUBX —1

Negate Rd <--- 0 – Rs1  NEG2 NEG NEG NEG

Not Rd <--- ~(Rs1) MVN MVN NOT NOT NOT

Move Rd <--- Rs1 MOV MOV MOV MV MOVE

Rotate right Rd <--- Rs i, >>  
Rd0. . . i–1 <--- Rs31–i. . . 31

ROR ROR ROTR   

And not Rd <--- Rs1 & ~(Rs2) BIC BIC     

Figure J.27 Arithmetic/logical instructions not found in MIPS core but found in two or more of the five embed-
ded architectures. We use —1 to show sequences that are available in 32-bit mode but not in 16-bit mode in Thumb
or MIPS16. The superscript 2 shows new instructions found only in 16-bit mode of Thumb or MIPS16, such as NEG2. 

Name Definition ARM v.4 Thumb SuperH M32R MIPS16

No. control registers Misc. registers 21 29 9 5 36 

Figure J.28 Control information in the five embedded architectures.



J.2 A Survey of RISC Architectures for Desktop, Server, and Embedded Computers � J-25

Notation Meaning Example Meaning 

<-- Data transfer. Length of transfer is 
given by the destination’s length; 
the length is specified when not 
clear.

Regs[R1]<--Regs[R2]; Transfer contents of R2 to R1. Registers 
have a fixed length, so transfers shorter 
than the register size must indicate which 
bits are used.

M Array of memory accessed in bytes. 
The starting address for a transfer is 
indicated as the index to the 
memory array.

Regs[R1]<--M[x]; Place contents of memory location x into 
R1. If a transfer starts at M[i] and 
requires 4 bytes, the transferred bytes are 
M[i], M[i+1], M[i+2], and M[i+3].

<--n Transfer an n-bit field, used 
whenever length of transfer is not 
clear.

M[y]<--16M[x]; Transfer 16 bits starting at memory 
location x to memory location y. The 
length of the two sides should match.

Xn Subscript selects a bit. Regs[R1]0<--0; Change sign bit of R1 to 0. (Bits are 
numbered from MSB starting at 0.)

Xm..n Subscript selects a field. Regs[R3]24..31<--
M[x];

Moves contents of memory location x 
into low-order byte of R3.

Xn Superscript replicates a bit field. Regs[R3]0..23<--024; Sets high-order 3 bytes of R3 to 0.

## Concatenates two fields. Regs[R3]<--024## 
M[x]; F2##F3<--
64M[x];

Moves contents of location x into low 
byte of R3; clears upper 3 bytes. Moves 
64 bits from memory starting at location 
x; 1st 32 bits go into F2, 2nd 32 into F3.

*, & Dereference a pointer; get the 
address of a variable.

p*<--&x; Assign to object pointed to by p the 
address of the variable x.

<<, >> C logical shifts (left, right). Regs[R1] << 5 Shift R1 left 5 bits.

==, !=, >, <, 
>=, <=

C relational operators; equal, not 
equal, greater, less, greater or equal, 
less or equal.

(Regs[R1]== Regs[R2]) 
& 
(Regs[R3]!=Regs[R4])

True if contents of R1 equal the contents 
of R2 and contents of R3 do not equal the 
contents of R4.

&, |, ^, ! C bitwise logical operations: and, 
or, exclusive or, and complement.

(Regs[R1] &  
(Regs[R2]| Regs[R3]))

Bitwise AND of R1 and bitwise OR of R2 
and R3. 

Figure J.29 Hardware description notation (and some standard C operators).

 (Plain) branch Delayed branch 
Annulling 
delayed branch 

Found in 
architectures

Alpha, PowerPC, ARM, Thumb, 
SuperH, M32R, MIPS 16

MIPS64, PA-RISC, 
SPARC, SuperH

MIPS64, SPARC PA-RISC

Execute following 
instruction

Only if branch not taken Always Only if branch 
taken

If forward branch not 
taken or backward 
branch taken 

Figure J.30 When the instruction following the branch is executed for three types of branches. 



J-26 � Appendix J  Survey of Instruction Set Architectures

SWR) allow this to be done in just two instructions: LWL loads the left portion of
the register and LWR loads the right portion of the register. SWL and SWR do the
corresponding stores. Figure J.31 shows how they work. There are also 64-bit
versions of these instructions. 

Remaining Instructions

Below is a list of the remaining unique details of the MIPS64 architecture: 

� NOR—This logical instruction calculates ~(Rs1 | Rs2). 

� Constant shift amount—Nonvariable shifts use the 5-bit constant field shown
in the register-register format in Figure J.5. 

Figure J.31 MIPS instructions for unaligned word reads. This figure assumes opera-
tion in Big Endian mode. Case 1 first loads the 3 bytes 101, 102, and 103 into the left of
R2, leaving the least-significant byte undisturbed. The following LWR simply loads byte
104 into the least-significant byte of R2, leaving the other bytes of the register
unchanged using LWL. Case 2 first loads byte 203 into the most-significant byte of R4,
and the following LWR loads the other 3 bytes of R4 from memory bytes 204, 205, and
206. LWL reads the word with the first byte from memory, shifts to the left to discard the
unneeded byte(s), and changes only those bytes in Rd. The byte(s) transferred are from
the first byte to the lowest-order byte of the word. The following LWR addresses the last
byte, right-shifts to discard the unneeded byte(s), and finally changes only those bytes
of Rd. The byte(s) transferred are from the last byte up to the highest-order byte of the
word. Store word left (SWL) is simply the inverse of LWL, and store word right (SWR) is the
inverse of LWR. Changing to Little Endian mode flips which bytes are selected and dis-
carded. (If big-little, left-right, load-store seem confusing, don’t worry; they work!) 

100 101 102 103

104 105 106 107

200 201 202 203

204 205 206 207

Case 1
Before

After

After

M[100] D DA V

M[104]

R2

R2

R2

E

J

D

D

O

A

A

H

V

V

N

N

E

LWL R2, 101:

LWR R2, 104:

Case 2
Before

After

After

M[200]

M[204]

R4

R4

R4

A V E

J

D

D

O

O

A

H

H

V

N

N

E

LWL R4,  203:

LWR R4,  206:



J.2 A Survey of RISC Architectures for Desktop, Server, and Embedded Computers � J-27

� SYSCALL—This special trap instruction is used to invoke the operating
system. 

� Move to/from control registers—CTCi and CFCi move between the integer
registers and control registers. 

� Jump/call not PC-relative—The 26-bit address of jumps and calls is not
added to the PC. It is shifted left 2 bits and replaces the lower 28 bits of the
PC. This would only make a difference if the program were located near a
256 MB boundary. 

� TLB instructions—Translation lookaside buffer (TLB) misses were handled
in software in MIPS I, so the instruction set also had instructions for manipu-
lating the registers of the TLB (see Chapter 5 for more on TLBs). These reg-
isters are considered part of the “system coprocessor.” Since MIPS I the
instructions differ among versions of the architecture; they are more part of
the implementations than part of the instruction set architecture. 

� Reciprocal and reciprocal square root—These instructions, which do not fol-
low IEEE 754 guidelines of proper rounding, are included apparently for
applications that value speed of divide and square root more than they value
accuracy. 

� Conditional procedure call instructions—BGEZAL saves the return address and
branches if the content of Rs1 is greater than or equal to zero, and BLTZAL
does the same for less than zero. The purpose of these instructions is to get a
PC-relative call. (There are “likely” versions of these instructions as well.) 

� Parallel single-precision floating-point operations—As well as extending the
architecture with parallel integer operations in MDMX, MIPS64 also sup-
ports two parallel 32-bit floating-point operations on 64-bit registers in a sin-
gle instruction. “Paired single” operations include add (ADD.PS), subtract
(SUB.PS), compare (C.__.PS), convert (CVT.PS.S, CVT.S.PL, CVT.S.PU),
negate (NEG.PS), absolute value (ABS.PS), move (MOV.PS, MOVF.PS,
MOVT.PS), multiply (MUL.PS), multiply-add (MADD.PS), and multiply-subtract
(MSUB.PS). 

There is no specific provision in the MIPS architecture for floating-point exe-
cution to proceed in parallel with integer execution, but the MIPS implementa-
tions of floating point allow this to happen by checking to see if arithmetic
interrupts are possible early in the cycle (see Appendix I). Normally, exception
detection would force serialization of execution of integer and floating-point
operations. 

Instructions Unique to Alpha

The Alpha was intended to be an architecture that was easy to build high-
performance implementations. Toward that goal, the architects originally made



J-28 � Appendix J  Survey of Instruction Set Architectures

two controversial decisions: imprecise floating-point exceptions and no byte or
half-word data transfers. 

To simplify pipelined execution, Alpha does not require that an exception act
as if no instructions past a certain point are executed and that all before that point
have been executed. It supplies the TRAPB instruction, which stalls until all prior
arithmetic instructions are guaranteed to complete without incurring arithmetic
exceptions. In the most conservative mode, placing one TRAPB per exception-
causing instruction slows execution by roughly five times but provides precise
exceptions (see Darcy and Gay [1996]). 

Code that does not include TRAPB does not obey the IEEE 754 floating-
point standard. The reason is that parts of the standard (NaNs, infinities, and
denormal) are implemented in software on Alpha, as it is on many other micro-
processors. To implement these operations in software, however, programs
must find the offending instruction and operand values, which cannot be done
with imprecise interrupts! 

When the architecture was developed, it was believed by the architects that
byte loads and stores would slow down data transfers. Byte loads require an extra
shifter in the data transfer path, and byte stores require that the memory system
perform a read-modify-write for memory systems with error correction codes
since the new ECC value must be recalculated. This omission meant that byte
stores require the sequence load word, replace desired byte, and then store word.
(Inconsistently, floating-point loads go through considerable byte swapping to
convert the obtuse VAX floating-point formats into a canonical form.) 

To reduce the number of instructions to get the desired data, Alpha includes
an elaborate set of byte manipulation instructions: extract field and zero rest of a
register (EXTxx), insert field (INSxx), mask rest of a register (MSKxx), zero fields
of a register (ZAP), and compare multiple bytes (CMPGE). 

Apparently the implementors were not as bothered by load and store byte as
were the original architects. Beginning with the shrink of the second version of
the Alpha chip (21164A), the architecture does include loads and stores for bytes
and half words. 

Remaining Instructions

Below is a list of the remaining unique instructions of the Alpha architecture: 

� PAL code—To provide the operations that the VAX performed in microcode,
Alpha provides a mode that runs with all privileges enabled, interrupts dis-
abled, and virtual memory mapping turned off for instructions. PAL (privi-
leged architecture library) code is used for TLB management, atomic
memory operations, and some operating system primitives. PAL code is
called via the CALL_PAL instruction. 

� No divide—Integer divide is not supported in hardware. 

� “Unaligned” load-store—LDQ_U and STQ_U load and store 64-bit data using
addresses that ignore the least-significant three bits. Extract instructions then



J.2 A Survey of RISC Architectures for Desktop, Server, and Embedded Computers � J-29

select the desired unaligned word using the lower address bits. These instruc-
tions are similar to LWL/R,SWL/R in MIPS. 

� Floating-point single precision represented as double precision—Single-
precision data are kept as conventional 32-bit formats in memory but are con-
verted to 64-bit double-precision format in registers. 

� Floating-point register F31 is fixed at zero—To simplify comparisons to zero. 

� VAX floating-point formats—To maintain compatibility with the VAX archi-
tecture, in addition to the IEEE 754 single- and double-precision formats
called S and T, Alpha supports the VAX single- and double-precision formats
called F and G, but not VAX format D. (D had too narrow an exponent field to
be useful for double precision and was replaced by G in VAX code.) 

� Bit count instructions—Version 3 of the architecture added instructions to
count the number of leading zeros (CTLZ), count the number of trailing zeros
(CTTZ), and count the number of ones in a word (CTPOP). Originally found on
Cray computers, these instructions help with decryption. 

Instructions Unique to SPARC v.9

Several features are unique to SPARC. 

Register Windows

The primary unique feature of SPARC is register windows, an optimization for
reducing register traffic on procedure calls. Several banks of registers are used,
with a new one allocated on each procedure call. Although this could limit the
depth of procedure calls, the limitation is avoided by operating the banks as a cir-
cular buffer, providing unlimited depth. The knee of the cost-performance curve
seems to be six to eight banks. 

SPARC can have between 2 and 32 windows, typically using 8 registers each
for the globals, locals, incoming parameters, and outgoing parameters. (Given
that each window has 16 unique registers, an implementation of SPARC can have
as few as 40 physical registers and as many as 520, although most have 128–136,
so far.) Rather than tie window changes with call and return instructions, SPARC
has the separate instructions SAVE and RESTORE. SAVE is used to “save” the
caller’s window by pointing to the next window of registers in addition to per-
forming an add instruction. The trick is that the source registers are from the
caller’s window of the addition operation, while the destination register is in the
callee’s window. SPARC compilers typically use this instruction for changing the
stack pointer to allocate local variables in a new stack frame. RESTORE is the
inverse of SAVE, bringing back the caller’s window while acting as an add instruc-
tion, with the source registers from the callee’s window and the destination regis-
ter in the caller’s window. This automatically deallocates the stack frame.
Compilers can also make use of it for generating the callee’s final return value. 



J-30 � Appendix J  Survey of Instruction Set Architectures

The danger of register windows is that the larger number of registers could
slow down the clock rate. This was not the case for early implementations. The
SPARC architecture (with register windows) and the MIPS R2000 architecture
(without) have been built in several technologies since 1987. For several genera-
tions the SPARC clock rate has not been slower than the MIPS clock rate for
implementations in similar technologies, probably because cache access times
dominate register access times in these implementations. The current-generation
machines took different implementation strategies—in order versus out of
order—and it’s unlikely that the number of registers by themselves determined
the clock rate in either machine. Recently, other architectures have included reg-
ister windows: Tensilica and IA-64.

Another data transfer feature is alternate space option for loads and stores.
This simply allows the memory system to identify memory accesses to input/
output devices, or to control registers for devices such as the cache and memory
management unit. 

Fast Traps

Version 9 SPARC includes support to make traps fast. It expands the single level
of traps to at least four levels, allowing the window overflow and underflow trap
handlers to be interrupted. The extra levels mean the handler does not need to
check for page faults or misaligned stack pointers explicitly in the code, thereby
making the handler faster. Two new instructions were added to return from this
multilevel handler: RETRY (which retries the interrupted instruction) and DONE
(which does not). To support user-level traps, the instruction RETURN will return
from the trap in nonprivileged mode. 

Support for LISP and Smalltalk

The primary remaining arithmetic feature is tagged addition and subtraction. The
designers of SPARC spent some time thinking about languages like LISP and
Smalltalk, and this influenced some of the features of SPARC already discussed:
register windows, conditional trap instructions, calls with 32-bit instruction
addresses, and multiword arithmetic (see Taylor et al. [1986] and Ungar et al.
[1984]). A small amount of support is offered for tagged data types with opera-
tions for addition, subtraction, and hence comparison. The two least-significant
bits indicate whether the operand is an integer (coded as 00), so TADDcc and
TSUBcc set the overflow bit if either operand is not tagged as an integer or if the
result is too large. A subsequent conditional branch or trap instruction can decide
what to do. (If the operands are not integers, software recovers the operands,
checks the types of the operands, and invokes the correct operation based on
those types.) It turns out that the misaligned memory access trap can also be put
to use for tagged data, since loading from a pointer with the wrong tag can be an
invalid access. Figure J.32 shows both types of tag support. 



J.2 A Survey of RISC Architectures for Desktop, Server, and Embedded Computers � J-31

Overlapped Integer and Floating-Point Operations

SPARC allows floating-point instructions to overlap execution with integer
instructions. To recover from an interrupt during such a situation, SPARC has a
queue of pending floating-point instructions and their addresses. RDPR allows the
processor to empty the queue. The second floating-point feature is the inclusion
of floating-point square root instructions FSQRTS, FSQRTD, and FSQRTQ. 

Remaining Instructions

The remaining unique features of SPARC are as follows: 

� JMPL uses Rd to specify the return address register, so specifying r31 makes it
similar to JALR in MIPS and specifying r0 makes it like JR. 

� LDSTUB loads the value of the byte into Rd and then stores FF16 into the
addressed byte. This version 8 instruction can be used to implement a sema-
phore (see Chapter 4). 

� CASA (CASXA) atomically compares a value in a processor register to a 32-
bit (64-bit) value in memory; if and only if they are equal, it swaps the value
in memory with the value in a second processor register. This version 9
instruction can be used to construct wait-free synchronization algorithms that
do not require the use of locks. 

Figure J.32 SPARC uses the two least-significant bits to encode different data types
for the tagged arithmetic instructions. (a) Integer arithmetic, which takes a single
cycle as long as the operands and the result are integers. (b) The misaligned trap can be
used to catch invalid memory accesses, such as trying to use an integer as a pointer. For
languages with paired data like LISP, an offset of –3 can be used to access the even
word of a pair (CAR) and +1 can be used for the odd word of a pair (CDR). 

(a) Add, sub, or
compare integers
(coded as 00)

(b) Loading via
valid pointer
(coded as 11)

00 (R5)

00 (R6)

00 (R7)

11

3

(R4)

00 (Word
address)

TADDcc r7, r5, r6

LD rD, r4, – 3

+
–

–



J-32 � Appendix J  Survey of Instruction Set Architectures

� XNOR calculates the exclusive OR with the complement of the second oper-
and. 

� BPcc, BPr, and FBPcc include a branch-prediction bit so that the compiler can
give hints to the machine about whether a branch is likely to be taken or not. 

� ILLTRAP causes an illegal instruction trap. Muchnick [1988] explains how
this is used for proper execution of aggregate returning procedures in C. 

� POPC counts the number of bits set to one in an operand, also found in the
third version of the Alpha architecture. 

� Nonfaulting loads allow compilers to move load instructions ahead of condi-
tional control structures that control their use. Hence, nonfaulting loads will
be executed speculatively. 

� Quadruple-precision floating-point arithmetic and data transfer allow the
floating-point registers to act as eight 128-bit registers for floating-point oper-
ations and data transfers. 

� Multiple-precision floating-point results for multiply mean that two single-
precision operands can result in a double-precision product and two double-
precision operands can result in a quadruple-precision product. These instruc-
tions can be useful in complex arithmetic and some models of floating-point
calculations. 

Instructions Unique to PowerPC

PowerPC is the result of several generations of IBM commercial RISC
machines—IBM RT/PC, IBM Power1, and IBM Power2—plus the Motorola
88x00. 

Branch Registers: Link and Counter

Rather than dedicate one of the 32 general-purpose registers to save the return
address on procedure call, PowerPC puts the address into a special register called
the link register. Since many procedures will return without calling another pro-
cedure, link doesn’t always have to be saved away. Making the return address a
special register makes the return jump faster since the hardware need not go
through the register read pipeline stage for return jumps. 

In a similar vein, PowerPC has a count register to be used in for loops where
the program iterates for a fixed number of times. By using a special register the
branch hardware can determine quickly whether a branch based on the count reg-
ister is likely to branch, since the value of the register is known early in the exe-
cution cycle. Tests of the value of the count register in a branch instruction will
automatically decrement the count register. 

Given that the count register and link register are already located with the
hardware that controls branches, and that one of the problems in branch predic-
tion is getting the target address early in the pipeline (see Appendix A), the



J.2 A Survey of RISC Architectures for Desktop, Server, and Embedded Computers � J-33

PowerPC architects decided to make a second use of these registers. Either regis-
ter can hold a target address of a conditional branch. Thus PowerPC supplements
its basic conditional branch with two instructions that get the target address from
these registers (BCLR, BCCTR). 

Remaining Instructions

Unlike most other RISC machines, register 0 is not hardwired to the value 0. It
cannot be used as a base register—that is, it generates a 0 in this case—but in
base + index addressing it can be used as the index. The other unique features of
the PowerPC are as follows: 

� Load multiple and store multiple save or restore up to 32 registers in a single
instruction. 

� LSW and STSW permit fetching and storing of fixed- and variable-length strings
that have arbitrary alignment. 

� Rotate with mask instructions support bit field extraction and insertion. One
version rotates the data and then performs logical AND with a mask of ones,
thereby extracting a field. The other version rotates the data but only places
the bits into the destination register where there is a corresponding 1 bit in the
mask, thereby inserting a field. 

� Algebraic right shift sets the carry bit (CA) if the operand is negative and any 1
bits are shifted out. Thus a signed divide by any constant power of 2 that
rounds toward 0 can be accomplished with a SRAWI followed by ADDZE,
which adds CA to the register. 

� CBTLZ will count leading zeros. 

� SUBFIC computes (immediate – RA), which can be used to develop a one’s or
two’s complement. 

� Logical shifted immediate instructions shift the 16-bit immediate to the left
16 bits before performing AND, OR, or XOR. 

Instructions Unique to PA-RISC 2.0

PA-RISC was expanded slightly in 1990 with version 1.1 and changed signifi-
cantly in 2.0 with 64-bit extensions in 1996. PA-RISC perhaps has the most
unusual features of any desktop RISC machine. For example, it has the most
addressing modes, instruction formats, and, as we shall see, several instructions
that are really the combination of two simpler instructions. 

Nullification

As shown in Figure J.30, several RISC machines can choose to not execute the
instruction following a delayed branch in order to improve utilization of the



J-34 � Appendix J  Survey of Instruction Set Architectures

branch slot. This is called nullification in PA-RISC, and it has been generalized to
apply to any arithmetic/logical instruction as well as to all branches. Thus an add
instruction can add two operands, store the sum, and cause the following instruc-
tion to be skipped if the sum is zero. Like conditional move instructions, nullifi-
cation allows PA-RISC to avoid branches in cases where there is just one
instruction in the then part of an if statement. 

A Cornucopia of Conditional Branches

Given nullification, PA-RISC did not need to have separate conditional branch
instructions. The inventors could have recommended that nullifying instructions
precede unconditional branches, thereby simplifying the instruction set. Instead,
PA-RISC has the largest number of conditional branches of any RISC machine.
Figure J.33 shows the conditional branches of PA-RISC. As you can see, several
are really combinations of two instructions.

Synthesized Multiply and Divide

PA-RISC provides several primitives so that multiply and divide can be synthe-
sized in software. Instructions that shift one operand 1, 2, or 3 bits and then add,
trapping or not on overflow, are useful in multiplies. (Alpha also includes instruc-
tions that multiply the second operand of adds and subtracts by 4 or by 8: S4ADD,
S8ADD, S4SUB, and S8SUB.) Divide step performs the critical step of nonrestoring

Name Instruction Notation 

COMB Compare and branch if (cond(Rs1,Rs2)) {PC <--- PC + offset12}

COMIB Compare imm. and branch if (cond(imm5,Rs2)) {PC <--- PC + offset12}

MOVB Move and branch Rs2 <--- Rs1,  
if (cond(Rs1,0))

{PC <--- PC + offset12}

MOVIB Move immediate and branch Rs2 <--- imm5,  
if (cond(imm5,0))

{PC <--- PC + offset12}

ADDB Add and branch Rs2 <--- Rs1 + Rs2,  
if (cond(Rs1 + Rs2,0))

{PC <--- PC + offset12}

ADDIB Add imm. and branch Rs2 <--- imm5 + Rs2,  
if (cond(imm5 + Rs2,0))

{PC <--- PC + offset12}

BB Branch on bit if (cond(Rsp,0) {PC <--- PC + offset12}

BVB Branch on variable bit if (cond(Rssar,0) {PC <--- PC + offset12}

Figure J.33 The PA-RISC conditional branch instructions. The 12-bit offset is called offset12 in this table, and the
5-bit immediate is called imm5. The 16 conditions are =, <, <=, odd, signed overflow, unsigned no overflow, zero or no
overflow unsigned, never, and their respective complements. The BB instruction selects one of the 32 bits of the reg-
ister and branches depending if its value is 0 or 1. The BVB selects the bit to branch using the shift amount register, a
special-purpose register. The subscript notation specifies a bit field.



J.2 A Survey of RISC Architectures for Desktop, Server, and Embedded Computers � J-35

divide, adding or subtracting depending on the sign of the prior result. Magen-
heimer et al. [1988] measured the size of operands in multiplies and divides to
show how well the multiply step would work. Using these data for C programs,
Muchnick [1988] found that by making special cases the average multiply by a
constant takes 6 clock cycles and multiply of variables takes 24 clock cycles. PA-
RISC has 10 instructions for these operations. 

The original SPARC architecture used similar optimizations, but with
increasing numbers of transistors the instruction set was expanded to include full
multiply and divide operations. PA-RISC gives some support along these lines by
putting a full 32-bit integer multiply in the floating-point unit; however, the inte-
ger data must first be moved to floating-point registers. 

Decimal Operations

COBOL programs will compute on decimal values, stored as 4 bits per digit, rather
than converting back and forth between binary and decimal. PA-RISC has instruc-
tions that will convert the sum from a normal 32-bit add into proper decimal digits.
It also provides logical and arithmetic operations that set the condition codes to test
for carries of digits, bytes, or half words. These operations also test whether bytes
or half words are zero. These operations would be useful in arithmetic on 8-bit
ASCII characters. Five PA-RISC instructions provide decimal support. 

Remaining Instructions

Here are some remaining PA-RISC instructions: 

� Branch vectored shifts an index register left 3 bits, adds it to a base register,
and then branches to the calculated address. It is used for case statements. 

� Extract and deposit instructions allow arbitrary bit fields to be selected from
or inserted into registers. Variations include whether the extracted field is
sign-extended, whether the bit field is specified directly in the instruction or
indirectly in another register, and whether the rest of the register is set to zero
or left unchanged. PA-RISC has 12 such instructions. 

� To simplify use of 32-bit address constants, PA-RISC includes ADDIL, which
adds a left-adjusted 21-bit constant to a register and places the result in regis-
ter 1. The following data transfer instruction uses offset addressing to add the
lower 11 bits of the address to register 1. This pair of instructions allows PA-
RISC to add a 32-bit constant to a base register, at the cost of changing regis-
ter 1. 

� PA-RISC has nine debug instructions that can set breakpoints on instruction
or data addresses and return the trapped addresses. 

� Load and clear instructions provide a semaphore or lock that reads a value
from memory and then writes zero. 



J-36 � Appendix J  Survey of Instruction Set Architectures

� Store bytes short optimizes unaligned data moves, moving either the leftmost
or the rightmost bytes in a word to the effective address, depending on the
instruction options and condition code bits. 

� Loads and stores work well with caches by having options that give hints
about whether to load data into the cache if it’s not already in the cache. For
example, load with a destination of register 0 is defined to be software-
controlled cache prefetch. 

� PA-RISC 2.0 extended cache hints to stores to indicate block copies, recom-
mending that the processor not load data into the cache if it’s not already in
the cache. It also can suggest that on loads and stores, there is spatial locality
to prepare the cache for subsequent sequential accesses. 

� PA-RISC 2.0 also provides an optional branch-target stack to predict indirect
jumps used on subroutine returns. Software can suggest which addresses get
placed on and removed from the branch-target stack, but hardware controls
whether or not these are valid. 

� Multiply/add and multiply/subtract are floating-point operations that can
launch two independent floating-point operations in a single instruction in
addition to the fused multiply/add and fused multiply/negate/add introduced
in version 2.0 of PA-RISC. 

Instructions Unique to ARM

It’s hard to pick the most unusual feature of ARM, but perhaps it is conditional
execution of instructions. Every instruction starts with a 4-bit field that deter-
mines whether it will act as a nop or as a real instruction, depending on the condi-
tion codes. Hence conditional branches are properly considered as conditionally
executing the unconditional branch instruction. Conditional execution allows
avoiding a branch to jump over a single instruction. It takes less code space and
time to simply conditionally execute one instruction. 

The 12-bit immediate field has a novel interpretation. The 8 least-significant
bits are zero-extended to a 32-bit value, then rotated right the number of bits
specified in the first 4 bits of the field multiplied by 2. Whether this split actually
catches more immediates than a simple 12-bit field would be an interesting study.
One advantage is that this scheme can represent all powers of 2 in a 32-bit word. 

Operand shifting is not limited to immediates. The second register of all
arithmetic and logical processing operations has the option of being shifted
before being operated on. The shift options are shift left logical, shift right logi-
cal, shift right arithmetic, and rotate right. Once again, it would be interesting to
see how often operations like rotate-and-add, shift-right-and-test, and so on occur
in ARM programs. 



J.2 A Survey of RISC Architectures for Desktop, Server, and Embedded Computers � J-37

Remaining Instructions

Below is a list of the remaining unique instructions of the ARM architecture: 

� Block loads and stores—Under control of a 16-bit mask within the instruc-
tions, any of the 16 registers can be loaded or stored into memory in a single
instruction. These instructions can save and restore registers on procedure
entry and return. These instructions can also be used for block memory
copy—offering up to four times the bandwidth of a single register load-
store—and today block copies are the most important use. 

� Reverse subtract—RSB allows the first register to be subtracted from the
immediate or shifted register. RSC does the same thing, but includes the carry
when calculating the difference. 

� Long multiplies—Similar to MIPS, Hi and Lo registers get the 64-bit signed
product (SMULL) or the 64-bit unsigned product (UMULL). 

� No divide—Like the Alpha, integer divide is not supported in hardware. 

� Conditional trap—A common extension to the MIPS core found in desktop
RISCs (Figures J.22 through J.25), it comes for free in the conditional execu-
tion of all ARM instructions, including SWI. 

� Coprocessor interface—Like many of the desktop RISCs, ARM defines a full
set of coprocessor instructions: data transfer, moves between general-purpose
and coprocessor registers, and coprocessor operations. 

� Floating-point architecture—Using the coprocessor interface, a floating-point
architecture has been defined for ARM. It was implemented as the FPA10
coprocessor. 

� Branch and exchange instruction sets—The BX instruction is the transition
between ARM and Thumb, using the lower 31 bits of the register to set the
PC and the most-significant bit to determine if the mode is ARM (1) or
Thumb (0). 

Instructions Unique to Thumb

In the ARM version 4 model, frequently executed procedures will use ARM
instructions to get maximum performance, with the less frequently executed ones
using Thumb to reduce the overall code size of the program. Since typically only
a few procedures dominate execution time, the hope is that this hybrid gets the
best of both worlds. 

Although Thumb instructions are translated by the hardware into conven-
tional ARM instructions for execution, there are several restrictions. First, condi-
tional execution is dropped from almost all instructions. Second, only the first 8
registers are easily available in all instructions, with the stack pointer, link regis-
ter, and program counter used implicitly in some instructions. Third, Thumb uses
a two-operand format to save space. Fourth, the unique shifted immediates and



J-38 � Appendix J  Survey of Instruction Set Architectures

shifted second operands have disappeared and are replaced by separate shift
instructions. Fifth, the addressing modes are simplified. Finally, putting all
instructions into 16 bits forces many more instruction formats. 

In many ways the simplified Thumb architecture is more conventional than
ARM. Here are additional changes made from ARM in going to Thumb: 

� Drop of immediate logical instructions—Logical immediates are gone. 

� Condition codes implicit—Rather than have condition codes set optionally,
they are defined by the opcode. All ALU instructions and none of the data
transfers set the condition codes. 

� Hi/Lo register access—The 16 ARM registers are halved into Lo registers and
Hi registers, with the 8 Hi registers including the stack pointer (SP), link reg-
ister, and PC. The Lo registers are available in all ALU operations. Variations
of ADD, BX, CMP, and MOV also work with all combinations of Lo and Hi regis-
ters. SP and PC registers are also available in variations of data transfers and
add immediates. Any other operations on the Hi registers require one MOV to
put the value into a Lo register, perform the operation there, and then transfer
the data back to the Hi register. 

� Branch/call distance—Since instructions are 16 bits wide, the 8-bit condi-
tional branch address is shifted by 1 instead of by 2. Branch with link is spec-
ified in two instructions, concatenating 11 bits from each instruction and
shifting them left to form a 23-bit address to load into PC. 

� Distance for data transfer offsets—The offset is now 5 bits for the general-
purpose registers and 8 bits for SP and PC. 

Instructions Unique to SuperH

Register 0 plays a special role in SuperH address modes. It can be added to
another register to form an address in indirect indexed addressing and PC-relative
addressing. R0 is used to load constants to give a larger addressing range than can
easily be fit into the 16-bit instructions of the SuperH. R0 is also the only register
that can be an operand for immediate versions of AND, CMP, OR, and XOR. 

Below is a list of the remaining unique details of the SuperH architecture: 

� Decrement and test—DT decrements a register and sets the T bit to 1 if the
result is 0. 

� Optional delayed branch—Although the other embedded RISC machines
generally do not use delayed branches (see Appendix A), SuperH offers
optional delayed branch execution for BT and BF. 

� Many multiplies—Depending if the operation is signed or unsigned, if the
operands are 16 bits or 32 bits, or if the product is 32 bits or 64 bits, the
proper multiply instruction is MULS, MULU, DMULS, DMULU, or MUL. The product
is found in the MACL and MACH registers. 



J.2 A Survey of RISC Architectures for Desktop, Server, and Embedded Computers � J-39

� Zero and sign extension—Bytes or half words are either zero-extended (EXTU)
or sign-extended (EXTS) within a 32-bit register. 

� One-bit shift amounts—Perhaps in an attempt to make them fit within the 16-
bit instructions, shift instructions only shift a single bit at a time. 

� Dynamic shift amount—These variable shifts test the sign of the amount in a
register to determine whether they shift left (positive) or shift right (negative).
Both logical (SHLD) and arithmetic (SHAD) instructions are supported. These
instructions help offset the 1-bit constant shift amounts of standard shifts. 

� Rotate—SuperH offers rotations by 1 bit left (ROTL) and right (ROTR), which
set the T bit with the value rotated, and also have variations that include the T
bit in the rotations (ROTCL and ROTCR). 

� SWAP—This instruction either swaps the high and low bytes of a 32-bit word
or the two bytes of the rightmost 16 bits. 

� Extract word (XTRCT)—The middle 32 bits from a pair of 32-bit registers are
placed in another register. 

� Negate with carry—Like SUBC (Figure J.27), except the first operand is 0. 

� Cache prefetch—Like many of the desktop RISCs (Figures J.22 through
J.25), SuperH has an instruction (PREF) to prefetch data into the cache. 

� Test-and-set—SuperH uses the older test-and-set (TAS) instruction to perform
atomic locks or semaphores (see Chapter 4). TAS first loads a byte from
memory. It then sets the T bit to 1 if the byte is 0 or to 0 if the byte is not 0.
Finally, it sets the most-significant bit of the byte to 1 and writes the result
back to memory. 

Instructions Unique to M32R

The most unusual feature of the M32R is a slight VLIW approach to the pairs of
16-bit instructions. A bit is reserved in the first instruction of the pair to say
whether this instruction can be executed in parallel with the next instruction—
that is, the two instructions are independent—or if these two must be executed
sequentially. (An earlier machine that offered a similar option was the Intel i860.)
This feature is included for future implementations of the architecture. 

One surprise is that all branch displacements are shifted left 2 bits before
being added to the PC and the lower 2 bits of the PC are set to 0. Since some
instructions are only 16 bits long, this shift means that a branch cannot go to any
instruction in the program: It can only branch to instructions on word boundaries.
A similar restriction is placed on the return address for the branch-and-link and
jump-and-link instructions: they can only return to a word boundary. Thus for a
slightly larger branch distance, software must ensure that all branch addresses
and all return addresses are aligned to a word boundary. The M32R code space is
probably slightly larger, and it probably executes more NOP instructions than it
would if the branch address were only shifted left 1 bit. 



J-40 � Appendix J  Survey of Instruction Set Architectures

However, the VLIW feature above means that a NOP can execute in parallel
with another 16-bit instruction, so that the padding doesn’t take more clock
cycles. The code size expansion depends on the ability of the compiler to sched-
ule code and to pair successive 16-bit instructions; Mitsubishi claims that code
size overall is only 7% larger than that for the Motorola 680x0 architecture. 

The last remaining novel feature is that the result of the divide operation is
the remainder instead of the quotient.

Instructions Unique to MIPS16

MIPS16 is not really a separate instruction set but a 16-bit extension of the full
32-bit MIPS architecture. It is compatible with any of the 32-bit address MIPS
architectures (MIPS I, MIPS II) or 64-bit architectures (MIPS III, IV, V). The
ISA mode bit determines the width of instructions: 0 means 32-bit-wide instruc-
tions and 1 means 16-bit-wide instructions. The new JALX instruction toggles the
ISA mode bit to switch to the other ISA. JR and JALR have been redefined to set
the ISA mode bit from the most-significant bit of the register containing the
branch address, and this bit is not considered part of the address. All jump and
link instructions save the current mode bit as the most-significant bit of the return
address. 

Hence MIPS supports whole procedures containing either 16-bit or 32-bit
instructions, but it does not support mixing the two lengths together in a single
procedure. The one exception is the JAL and JALX: These two instructions need
32 bits even in the 16-bit mode, presumably to get a large enough address to
branch to far procedures. 

In picking this subset, MIPS decided to include opcodes for some three-
operand instructions and to keep 16 opcodes for 64-bit operations. The combina-
tion of this many opcodes and operands in 16 bits led the architects to provide
only 8 easy-to-use registers—just like Thumb—whereas the other embedded
RISCs offer about 16 registers. Since the hardware must include the full 32 regis-
ters of the 32-bit ISA mode, MIPS16 includes move instructions to copy values
between the 8 MIPS16 registers and the remaining 24 registers of the full MIPS
architecture. To reduce pressure on the 8 visible registers, the stack pointer is
considered a separate register. MIPS16 includes a variety of separate opcodes to
do data transfers using sp as a base register and to increment sp: LWSP, LDSP, SWSP,
SDSP, ADJSP, DADJSP, ADDIUSPD, and DADDIUSP. 

To fit within the 16-bit limit, immediate fields have generally been shortened
to 5 to 8 bits. MIPS16 provides a way to extend its shorter immediates into the
full width of immediates in the 32-bit mode. Borrowing a trick from the Intel
8086, the EXTEND instruction is really a 16-bit prefix that can be prepended to any
MIPS16 instruction with an address or immediate field. The prefix supplies
enough bits to turn the 5-bit fields of data transfers and 5- to 8-bit fields of arith-
metic immediates into 16-bit constants. Alas, there are two exceptions. ADDIU
and DADDIU start with 4-bit immediate fields, but since EXTEND can only supply
11 more bits, the wider immediate is limited to 15 bits. EXTEND also extends the



J.2 A Survey of RISC Architectures for Desktop, Server, and Embedded Computers � J-41

3-bit shift fields into 5-bit fields for shifts. (In case you were wondering, the
EXTEND prefix does not need to start on a 32-bit boundary.) 

To further address the supply of constants, MIPS16 added a new addressing
mode! PC-relative addressing for load word (LWPC) and load double (LDPC) shifts
an 8-bit immediate field by 2 or 3 bits, respectively, adding it to the PC with the
lower 2 or 3 bits cleared. The constant word or double word is then loaded into a
register. Thus 32-bit or 64-bit constants can be included with MIPS16 code,
despite the loss of LIU to set the upper register bits. Given the new addressing
mode, there is also an instruction (ADDIUPC) to calculate a PC-relative address
and place it in a register. 

MIPS16 differs from the other embedded RISCs in that it can subset a 64-bit
address architecture. As a result it has 16-bit instruction-length versions of 64-bit
data operations: data transfer (LD, SD, LWU), arithmetic operations (DADDU/IU,
DSUBU, DMULT/U, DDIV/U), and shifts (DSLL/V, DSRA/V, DSRL/V). 

Since MIPS plays such a prominent role in this book, we show all the addi-
tional changes made from the MIPS core instructions in going to MIPS16: 

� Drop of signed arithmetic instructions—Arithmetic instructions that can trap
were dropped to save opcode space: ADD, ADDI, SUB, DADD, DADDI, DSUB. 

� Drop of immediate logical instructions—Logical immediates are gone too:
ANDI, ORI, XORI. 

� Branch instructions pared down—Comparing two registers and then branch-
ing did not fit, nor did all the other comparisons of a register to zero. Hence
these instructions didn’t make it either: BEQ, BNE, BGEZ, BGTZ, BLEZ, and
BLTZ. As mentioned in the section “Instructions: The MIPS Core Subset” on
page J-6, to help compensate MIPS16 includes compare instructions to test if
two registers are equal. Since compare and set-on-less-than set the new T reg-
ister, branches were added to test the T register. 

� Branch distance—Since instructions are 16 bits wide, the branch address is
shifted by one instead of by two. 

� Delayed branches disappear—The branches take effect before the next
instruction. Jumps still have a one-slot delay. 

� Extension and distance for data transfer offsets—The 5-bit and 8-bit fields
are zero-extended instead of sign-extended in 32-bit mode. To get greater
range, the immediate fields are shifted left 1, 2, or 3 bits depending on
whether the data is half word, word, or double word. If the EXTEND prefix is
prepended to these instructions, they use the conventional signed 16-bit
immediate of the 32-bit mode. 

� Extension of arithmetic immediates—The 5-bit and 8-bit fields are zero-
extended for set-on-less-than and compare instructions, for forming a PC-
relative address, and for adding to SP and placing the result in a register
(ADDIUSP, DADDIUSP). Once again, if the EXTEND prefix is prepended to these
instructions, they use the conventional signed 16-bit immediate of the 32-bit



J-42 � Appendix J  Survey of Instruction Set Architectures

mode. They are still sign-extended for general adds and for adding to SP and
placing the result back in SP (ADJSP, DADJSP). Alas, code density and orthog-
onality are strange bedfellows in MIPS16! 

� Redefining shift amount of 0—MIPS16 defines the value 0 in the 3-bit shift
field to mean a shift of 8 bits. 

� New instructions added due to loss of register 0 as zero—Load immediate,
negate, and not were added, since these operations could no longer be synthe-
sized from other instructions using r0 as a source. 

Concluding Remarks

This survey covers the addressing modes, instruction formats, and all instructions
found in 10 RISC architectures. Although the later sections concentrate on the
differences, it would not be possible to cover 10 architectures in these few pages
if there were not so many similarities. In fact, we would guess that more than
90% of the instructions executed for any of these architectures would be found in
Figures J.9 through J.17. To contrast this homogeneity, Figure J.34 gives a sum-
mary for four architectures from the 1970s in a format similar to that shown in
Figure J.1. (Since it would be impossible to write a single section in this style for
those architectures, the next three sections cover the 80x86, VAX, and IBM 360/
370.) In the history of computing, there has never been such widespread agree-
ment on computer architecture. 

 IBM 360/370 Intel 8086 Motorola 68000 DEC VAX 

Date announced 1964/1970 1978 1980 1977

Instruction size(s) (bits) 16, 32, 48 8, 16, 24, 32, 40, 48 16, 32, 48, 64, 80 8, 16, 24, 32,..., 432

Addressing (size, model) 24 bits, flat/  
31 bits, flat

4 + 16 bits, 
segmented

24 bits, flat 32 bits, flat

Data aligned? Yes 360/No 370 No 16-bit aligned No

Data addressing modes 2/3 5 9 = 14

Protection Page None Optional Page

Page size 2 KB & 4 KB — 0.25 to 32 KB 0.5 KB

I/O Opcode Opcode Memory mapped Memory mapped

Integer registers (size, model, 
number)

16 GPR × 32 bits 8 dedicated  
data × 16 bits

8 data and 8 address  
× 32 bits

15 GPR × 32 bits

Separate floating-point registers 4 × 64 bits Optional: 8 × 80 bits Optional: 8 × 80 bits 0

Floating-point format IBM (floating  
hexadecimal)

IEEE 754 single,  
double, extended

IEEE 754 single,  
double, extended

DEC 

Figure J.34 Summary of four 1970s architectures. Unlike the architectures in Figure J.1, there is little agreement
between these architectures in any category. (See Section J.3 for more details on the 80x86 and Section J.4 for a
description of the VAX.) 



J.2 A Survey of RISC Architectures for Desktop, Server, and Embedded Computers � J-43

This style of architecture cannot remain static, however. Like people, instruc-
tion sets tend to get bigger as they get older. Figure J.35 shows the genealogy of
these instruction sets, and Figure J.36 shows which features were added to or
deleted from generations of desktop RISCs over time. 

As you can see, all the desktop RISC machines have evolved to 64-bit
address architectures, and they have done so fairly painlessly. 

Figure J.35 The lineage of RISC instruction sets. Commercial machines are shown in plain text and research
machines in bold. The CDC-6600 and Cray-1 were load-store machines with register 0 fixed at 0, and separate integer
and floating-point registers. Instructions could not cross word boundaries. An early IBM research machine led to the
801 and America research projects, with the 801 leading to the unsuccessful RT/PC and America leading to the suc-
cessful Power architecture. Some people who worked on the 801 later joined Hewlett-Packard to work on the PA-
RISC. The two university projects were the basis of MIPS and SPARC machines. According to Furber [1996], the Berke-
ley RISC project was the inspiration of the ARM architecture. While ARM1, ARM2, and ARM3 were names of both
architectures and chips, ARM version 4 is the name of the architecture used in ARM7, ARM8, and StrongARM chips.
(There are no ARM v.4 and ARM5 chips, but ARM6 and early ARM7 chips use the ARM3 architecture.) DEC built a RISC
microprocessor in 1988 but did not introduce it. Instead, DEC shipped workstations using MIPS microprocessors for
three years before they brought out their own RISC instruction set, Alpha 21064, which is very similar to MIPS III and
PRISM. The Alpha architecture has had small extensions, but they have not been formalized with version numbers;
we used version 3 because that is the version of the reference manual. The Alpha 21164A chip added byte and half-
word loads and stores, and the Alpha 21264 includes the MAX multimedia and bit count instructions. Internally, Dig-
ital names chips after the fabrication technology: EV4 (21064), EV45 (21064A), EV5 (21164), EV56 (21164A), and EV6
(21264). “EV” stands for “extended VAX.” 

1960

2000

1995

1990

1985

1980

1975

1970

1965

CDC 6600
1963

IBM ASC 1968

IBM 801
1975

America
   1985  

Power1
1990

PowerPC
1993

Power2
1993

RT/PC
1986

PA-RISC
1986

PA-RISC 1.1
1990

Cray 1
1976

Berkeley RISC-1
1981

SPARC v.8
1987

SPARC v.9
1994

Stanford MIPS
1982

MIPS I
1986

ARM1
1985

MIPS II
1989

MIPS III
1992

Alpha
1992

Digital PRISM
1988

MIPS IV
1994

Alpha v.3
1996

PA-RISC 2.0
1996

ARM2
1987

ARM3
1990

ARM v.4
1995

Thumb
1995

SuperH
1992

M32R
1997

MIPS V
1996

MIPS 16
1996



J-44 � Appendix J  Survey of Instruction Set Architectures

Acknowledgments

We would like to thank the following people for comments on drafts of this sur-
vey: Professor Steven B. Furber, University of Manchester; Dr. Dileep Bhan-
darkar, Intel Corporation; Dr. Earl Killian, Silicon Graphics/MIPS; and Dr.
Hiokazu Takata, Mitsubishi Electric Corporation. 

 PA-RISC SPARC MIPS Power

Feature 1.0 1.1 2.0 v. 8 v. 9 I II III IV V 1 2 PC 

Interlocked loads X " " X "  + " "  X " "

Load-store FP double X " " X "  + " "  X " "

Semaphore X " " X "  + " "  X " "

Square root X " " X "  + " "   + "

Single-precision FP ops X " " X " X " " "    +

Memory synchronize X " " X "  + " "  X " "

Coprocessor X " " X — X " " "     

Base + index addressing X " " X "    +  X " "

Equiv. 32 64-bit FP 
registers

 " "  +   + "  X " "

Annulling delayed branch X " " X "  + " "     

Branch register contents X " "  + X " " "     

Big/Little Endian  + "  + X " " "    +

Branch-prediction bit     +  + " "  X " "

Conditional move     +    +  X " —

Prefetch data into cache   +  +    +  X " "

64-bit addressing/int. ops   +  +   + "    +

32-bit multiply, divide  + "  + X " " "  X " "

Load-store FP quad     +       + —

Fused FP mul/add   +      +  X " "

String instructions X " "        X " —

Multimedia support  X " X      X     

Figure J.36 Features added to desktop RISC machines. X means in the original machine, + means added later, "
means continued from prior machine, and — means removed from architecture. Alpha is not included, but it added
byte and word loads and stores, and bit count and multimedia extensions, in version 3. MIPS V added the MDMX
instructions and paired single floating-point operations. 



J.3 The Intel 80x86 � J-45

Introduction

MIPS was the vision of a single architect. The pieces of this architecture fit nicely
together and the whole architecture can be described succinctly. Such is not the
case of the 80x86: It is the product of several independent groups who evolved
the architecture over 20 years, adding new features to the original instruction set
as you might add clothing to a packed bag. Here are important 80x86 milestones:

� 1978—The Intel 8086 architecture was announced as an assembly language–
compatible extension of the then-successful Intel 8080, an 8-bit microproces-
sor. The 8086 is a 16-bit architecture, with all internal registers 16 bits wide.
Whereas the 8080 was a straightforward accumulator machine, the 8086
extended the architecture with additional registers. Because nearly every reg-
ister has a dedicated use, the 8086 falls somewhere between an accumulator
machine and a general-purpose register machine, and can fairly be called an
extended accumulator machine. 

� 1980—The Intel 8087 floating-point coprocessor is announced. This archi-
tecture extends the 8086 with about 60 floating-point instructions. Its archi-
tects rejected extended accumulators to go with a hybrid of stacks and
registers, essentially an extended stack architecture: A complete stack instruc-
tion set is supplemented by a limited set of register-memory instructions. 

� 1982—The 80286 extended the 8086 architecture by increasing the address
space to 24 bits, by creating an elaborate memory mapping and protection
model, and by adding a few instructions to round out the instruction set and to
manipulate the protection model. Because it was important to run 8086 pro-
grams without change, the 80286 offered a real addressing mode to make the
machine look just like an 8086.

� 1985—The 80386 extended the 80286 architecture to 32 bits. In addition to a
32-bit architecture with 32-bit registers and a 32-bit address space, the 80386
added new addressing modes and additional operations. The added instruc-
tions make the 80386 nearly a general-purpose register machine. The 80386
also added paging support in addition to segmented addressing (see Chapter
5). Like the 80286, the 80386 has a mode to execute 8086 programs without
change. 

This history illustrates the impact of the “golden handcuffs” of compatibility
on the 80x86, as the existing software base at each step was too important to
jeopardize with significant architectural changes. Fortunately, the subsequent
80486 in 1989, Pentium in 1992, and P6 in 1995 were aimed at higher perfor-
mance, with only four instructions added to the user-visible instruction set: three
to help with multiprocessing plus a conditional move instruction.

J.3 The Intel 80x86



J-46 � Appendix J  Survey of Instruction Set Architectures

Since 1997 Intel has added hundreds of instructions to support multimedia by
operating on many narrower data types within a single clock (see Appendix B).
These SIMD or vector instructions are primarily used in handcoded libraries or
drivers and rarely generated by compilers. The first extension, called MMX,
appeared in 1997. It consists of 57 instructions that pack and unpack multiple
bytes, 16-bit words, or 32-bit double words into 64-bit registers and performs
shift, logical, and integer arithmetic on the narrow data items in parallel. It sup-
ports both saturating and nonsaturating arithmetic. MMX uses the registers com-
prising the floating-point stack and hence there is no new state for operating
systems to save.

In 1999 Intel added another 70 instructions, labeled SSE as part of Pentium
III. The primary changes were to add eight separate registers, double their width
to 128 bits, and add a single-precision floating-point data type. Hence four 32-bit
floating-point operations can be performed in parallel. To improve memory per-
formance, SSE included cache prefetch instructions plus streaming store instruc-
tions that bypass the caches and write directly to memory.

In 2001 Intel added yet another 144 instructions, this time labeled SSE2. The
new data type is double-precision arithmetic, which allows pairs of 64-bit
floating-point operations in parallel. Almost all of these 144 instructions are ver-
sions of existing MMX and SSE instructions that operate on 64 bits of data in
parallel. Not only does this change enable multimedia operations, it gives the
compiler a different target for floating-point operations than the unique stack
architecture. Compilers can choose to use the eight SSE registers as floating-
point registers as found in the RISC machines. This change has boosted perfor-
mance on the Pentium 4, the first microprocessor to include SSE2 instructions. At
the time of announcement, a 1.5 GHz Pentium 4 was 1.24 times faster than a 1
GHz Pentium III for SPECint2000(base), but it was 1.88 times faster for
SPECfp2000(base).

In 2003 a company other than Intel enhanced the IA-32 architecture this time.
AMD announced a set of architectural extensions to increase the address space
for 32 to 64 bits. Similar to the transition from 16- to 32-bit address space in 1985
with the 80386, AMD64 widens all registers to 64-bits. It also increases the num-
ber of registers to 16 and has 16 128-bit registers to support XMM, AMD’s
answer to SSE2. Rather than expand the instruction set, the primary change is
adding a new mode called long mode that redefines the execution of all IA-32
instructions with 64-bit addresses. To address the larger number of registers, it
adds a new prefix to instructions. AMD64 still has a 32-bit mode that is back-
wards compatible to the standard Intel instruction set, allowing a more graceful
transition to 64-bit addressing than the HP/Intel Itanium. Intel later followed
AMD’s lead, making almost identical changes so that most software can run on
either 64-bit address version of the 80x86 without change.

Whatever the artistic failures of the 80x86, keep in mind that there are more
instances of this architectural family than of any other server or desktop proces-
sor in the world. Nevertheless, its checkered ancestry has led to an architecture
that is difficult to explain and impossible to love. 



J.3 The Intel 80x86 � J-47

We start our explanation with the registers and addressing modes, move on to
the integer operations, then cover the floating-point operations, and conclude
with an examination of instruction encoding.

80x86 Registers and Data Addressing Modes

The evolution of the instruction set can be seen in the registers of the 80x86
(Figure J.37). Original registers are shown in black type, with the extensions of
the 80386 shown in a lighter shade, a coloring scheme followed in subsequent
figures. The 80386 basically extended all 16-bit registers (except the segment
registers) to 32 bits, prefixing an “E” to their name to indicate the 32-bit version.
The arithmetic, logical, and data transfer instructions are two-operand instruc-
tions that allow the combinations shown in Figure J.38.

To explain the addressing modes we need to keep in mind whether we are
talking about the 16-bit mode used by both the 8086 and 80286 or the 32-bit
mode available on the 80386 and its successors. The seven data memory address-
ing modes supported are

� absolute

� register indirect

� based

� indexed

� based indexed with displacement

� based with scaled indexed

� based with scaled indexed and displacement 

Displacements can be 8 or 32 bits in 32-bit mode, and 8 or 16 bits in 16-bit mode.
If we count the size of the address as a separate addressing mode, the total is 11
addressing modes. 

Although a memory operand can use any addressing mode, there are restric-
tions on what registers can be used in a mode. The section “80x86 Instruction
Encoding” on page J-55 gives the full set of restrictions on registers, but the fol-
lowing description of addressing modes gives the basic register options:

� Absolute—With 16-bit or 32-bit displacement, depending on the mode.

� Register indirect—BX, SI, DI in 16-bit mode and EAX, ECX, EDX, EBX, ESI, and
EDI in 32-bit mode.

� Based mode with 8-bit or 16-bit/32-bit displacement—BP, BX, SI, DI in 16-bit
mode and EAX, ECX, EDX, EBX, ESI, and EDI in 32-bit mode. The displacement
is either 8 bits or the size of the address mode: 16 or 32 bits. (Intel gives two
different names to this single addressing mode, based and indexed, but they
are essentially identical and we combine them. This book uses indexed
addressing to mean something different and is explained next.)



J-48 � Appendix J  Survey of Instruction Set Architectures

Figure J.37 The 80x86 has evolved over time, and so has its register set. The original set is shown in black, and the
extended set in gray. The 8086 divided the first four registers in half so that they could be used either as one 16-bit
register or as two 8-bit registers. Starting with the 80386, the top eight registers were extended to 32 bits and could
also be used as general-purpose registers. The floating-point registers on the bottom are 80 bits wide, and although
they look like regular registers they are not. They implement a stack, with the top of stack pointed to by the status
register. One operand must be the top of stack, and the other can be any of the other seven registers below the top
of stack.

FPR 0

FPR 1

FPR 2

FPR 3

FPR 4

FPR 5

FPR 6

FPR 7

079

015

015

8 731

GPR 0 AccumulatorEAX AX AH AL

GPR 3 Base addr. regEBX BX BH BL

GPR 1 Count reg: string, loopECX CX CH CL

GPR 2 Data reg: multiply, divideEDX DX DH DL

GPR 6 ESI Index reg, string source ptr.SI

Code segment ptr.CS

Stack  segment ptr. (top of stack)SS

Data segment ptr.DS

Extra data segment ptr. ES

Data segment ptr. 2FS

Data segment ptr. 3GS

GPR 7 EDI Index reg, string dest. ptr.DI

GPR 5 EBP Base ptr. (for base of stack seg.)BP

PC

GPR 4 ESP Stack ptr.SP

EIP Instruction ptr. (PC)IP

EFLAGS Condition codesFLAGS

 Top of FP stack,

 FP condition codes
Status

80x86, 80x28680x386, 80x486, Pentium



J.3 The Intel 80x86 � J-49

� Indexed—Address is sum of two registers. The allowable combinations are
BX+SI, BX+DI, BP+SI, and BP+DI. This mode is called based indexed on the
8086. (The 32-bit mode uses a different addressing mode to get the same
effect.)

� Based indexed with 8- or 16-bit displacement—The address is the sum of dis-
placement and contents of two registers. The same restrictions on registers
apply as in indexed mode.

� Base plus scaled indexed—This addressing mode and the next were added in
the 80386, and are only available in 32-bit mode. The address calculation is

Base register + 2Scale  × Index register

where Scale has the value 0, 1, 2, or 3; Index register can be any of the eight
32-bit general registers except ESP; and Base register can be any of the eight
32-bit general registers.

� Base plus scaled index with 8- or 32-bit displacement—The address is the
sum of the displacement and the address calculated by the scaled mode
immediately above. The same restrictions on registers apply.

The 80x86 uses Little Endian addressing.
Ideally, we would refer discussion of 80x86 logical and physical addresses to

Chapter 5, but the segmented address space prevents us from hiding that informa-
tion. Figure J.39 shows the memory mapping options on the generations of
80x86 machines; Chapter 5 describes the segmented protection scheme in greater
detail.

The assembly language programmer clearly must specify which segment reg-
ister should be used with an address, no matter which address mode is used. To
save space in the instructions, segment registers are selected automatically
depending on which address register is used. The rules are simple: References to
instructions (IP) use the code segment register (CS), references to the stack (BP or
SP) use the stack segment register (SS), and the default segment register for the
other registers is the data segment register (DS). The next section explains how
they can be overridden.

Source/destination operand type Second source operand

Register Register

Register Immediate

Register Memory

Memory Register

Memory Immediate

Figure J.38 Instruction types for the arithmetic, logical, and data transfer instruc-
tions. The 80x86 allows the combinations shown. The only restriction is the absence of
a memory-memory mode. Immediates may be 8, 16, or 32 bits in length; a register is
any one of the 14 major registers in Figure J.37 (not IP or FLAGS). 



J-50 � Appendix J  Survey of Instruction Set Architectures

80x86 Integer Operations

The 8086 provides support for both 8-bit (byte) and 16-bit (called word) data
types. The data type distinctions apply to register operations as well as memory
accesses. The 80386 adds 32-bit addresses and data, called double words. Almost
every operation works on both 8-bit data and one longer data size. That size is
determined by the mode and is either 16 or 32 bits. 

Figure J.39 The original segmented scheme of the 8086 is shown on the left. All 80x86 processors support this
style of addressing, called real mode. It simply takes the contents of a segment register, shifts it left 4 bits, and adds it
to the 16-bit offset, forming a 20-bit physical address. The 80286 (center) used the contents of the segment register
to select a segment descriptor, which includes a 24-bit base address among other items. It is added to the 16-bit off-
set to form the 24-bit physical address. The 80386 and successors (right) expand this base address in the segment
descriptor to 32 bits and also add an optional paging layer below segmentation. A 32-bit linear address is first
formed from the segment and offset, and then this address is divided into two 10-bit fields and a 12-bit page offset.
The first 10-bit field selects the entry in the first-level page table, and then this entry is used in combination with the
second 10-bit field to access the second-level page table to select the upper 20 bits of the physical address. Prepend-
ing this 20-bit address to the final 12-bit field gives the 32-bit physical address. Paging can be turned off, redefining
the 32-bit linear address as the physical address. Note that a “flat” 80x86 address space comes simply by loading the
same value in all the segment registers; that is, it doesn’t matter which segment register is selected.

OffsetSegment

16 32

32

32

32

20 20

20

1010

12

Physical address

Physical address

Linear address

Logical address

Paging

Segmentation

OffsetSegment

16 16

24

24

Logical address

OffsetSegment

16

Physical address

12 4

16

20

Logical address

Segmentation

Real mode Protected mode

(8086) (80286) (80386, 80486, Pentium)



J.3 The Intel 80x86 � J-51

Clearly some programs want to operate on data of all three sizes, so the
80x86 architects provide a convenient way to specify each version without
expanding code size significantly. They decided that most programs would be
dominated by either 16- or 32-bit data, and so it made sense to be able to set a
default large size. This default size is set by a bit in the code segment register. To
override the default size, an 8-bit prefix is attached to the instruction to tell the
machine to use the other large size for this instruction.

The prefix solution was borrowed from the 8086, which allows multiple pre-
fixes to modify instruction behavior. The three original prefixes override the default
segment register, lock the bus so as to perform a semaphore (see Chapter 4), or
repeat the following instruction until CX counts down to zero. This last prefix was
intended to be paired with a byte move instruction to move a variable number of
bytes. The 80386 also added a prefix to override the default address size.

The 80x86 integer operations can be divided into four major classes:

1. Data movement instructions, including move, push, and pop.

2. Arithmetic and logic instructions, including logical operations, test, shifts,
and integer and decimal arithmetic operations.

3. Control flow, including conditional branches and unconditional jumps, calls,
and returns.

4. String instructions, including string move and string compare.

Figure J.40 shows some typical 80x86 instructions and their functions.
The data transfer, arithmetic, and logic instructions are unremarkable, except

that the arithmetic and logic instruction operations allow the destination to be
either a register or a memory location.

Control flow instructions must be able to address destinations in another seg-
ment. This is handled by having two types of control flow instructions: “near” for
intrasegment (within a segment) and “far” for intersegment (between segments)
transfers. In far jumps, which must be unconditional, two 16-bit quantities follow
the opcode in 16-bit mode. One of these is used as the instruction pointer, while
the other is loaded into CS and becomes the new code segment. In 32-bit mode
the first field is expanded to 32 bits to match the 32-bit program counter (EIP). 

Calls and returns work similarly—a far call pushes the return instruction
pointer and return segment on the stack and loads both the instruction pointer and
the code segment. A far return pops both the instruction pointer and the code seg-
ment from the stack. Programmers or compiler writers must be sure to always use
the same type of call and return for a procedure—a near return does not work
with a far call, and vice versa.

String instructions are part of the 8080 ancestry of the 80x86 and are not
commonly executed in most programs.

Figure J.41 lists some of the integer 80x86 instructions. Many of the instruc-
tions are available in both byte and word formats.



J-52 � Appendix J  Survey of Instruction Set Architectures

80x86 Floating-Point Operations

Intel provided a stack architecture with its floating-point instructions: loads push
numbers onto the stack, operations find operands in the top two elements of the
stacks, and stores can pop elements off the stack, just as the stack example in Fig-
ure B.2 on page B-4 suggests. 

Intel supplemented this stack architecture with instructions and addressing
modes that allow the architecture to have some of the benefits of a register-
memory model. In addition to finding operands in the top two elements of the
stack, one operand can be in memory or in one of the seven registers below the
top of the stack. 

This hybrid is still a restricted register-memory model, however, in that loads
always move data to the top of the stack while incrementing the top of stack
pointer and stores can only move the top of stack to memory. Intel uses the nota-
tion ST to indicate the top of stack, and ST(i) to represent the ith register below
the top of stack.

One novel feature of this architecture is that the operands are wider in the reg-
ister stack than they are stored in memory, and all operations are performed at
this wide internal precision. Numbers are automatically converted to the internal
80-bit format on a load and converted back to the appropriate size on a store.
Memory data can be 32-bit (single-precision) or 64-bit (double-precision) floating-
point numbers, called real by Intel. The register-memory version of these instruc-
tions will then convert the memory operand to this Intel 80-bit format before per-

Instruction Function

JE  name if equal(CC) {IP←name}; IP–128 ≤ name ≤ IP+128
JMP  name IP←name

CALLF name, seg SP←SP–2; M[SS:SP]←IP+5; SP←SP–2; 
M[SS:SP]←CS; IP←name; CS←seg; 

MOVW  BX,[DI+45] BX←16M[DS:DI+45]

PUSH SI SP←SP–2; M[SS:SP]←SI

POP  DI DI←M[SS:SP]; SP←SP+2

ADD  AX,#6765 AX←AX+6765

SHL  BX,1 BX←BX1..15 ## 0

TEST DX,#42 Set CC flags with DX & 42

MOVSB M[ES:DI]←8M[DS:SI]; DI←DI+1; SI←SI+1

Figure J.40 Some typical 80x86 instructions and their functions. A list of frequent
operations appears in Figure J.41. We use the abbreviation SR:X to indicate the forma-
tion of an address with segment register SR and offset X. This effective address corre-
sponding to SR:X is (SR<<4)+X. The CALLF saves the IP of the next instruction and the
current CS on the stack. 



J.3 The Intel 80x86 � J-53

forming the operation. The data transfer instructions also will automatically
convert 16- and 32-bit integers to reals, and vice versa, for integer loads and
stores.

The 80x86 floating-point operations can be divided into four major classes:

1. Data movement instructions, including load, load constant, and store.

2. Arithmetic instructions, including add, subtract, multiply, divide, square root,
and absolute value.

Instruction Meaning

Control Conditional and unconditional branches

JNZ, JZ Jump if condition to IP + 8-bit offset; JNE (for JNZ), JE (for JZ) are alternative names

JMP, JMPF Unconditional jump—8- or 16-bit offset intrasegment (near), and intersegment (far) versions

CALL, CALLF Subroutine call—16-bit offset; return address pushed; near and far versions

RET, RETF Pops return address from stack and jumps to it; near and far versions

LOOP Loop branch—decrement CX; jump to IP + 8-bit displacement if CX ≠ 0

Data transfer Move data between registers or between register and memory

MOV Move between two registers or between register and memory

PUSH Push source operand on stack

POP Pop operand from stack top to a register

LES Load ES and one of the GPRs from memory

Arithmetic/logical Arithmetic and logical operations using the data registers and memory

ADD Add source to destination; register-memory format

SUB Subtract source from destination; register-memory format

CMP Compare source and destination; register-memory format

SHL Shift left

SHR Shift logical right

RCR Rotate right with carry as fill

CBW Convert byte in AL to word in AX

TEST Logical AND of source and destination sets flags

INC Increment destination; register-memory format

DEC Decrement destination; register-memory format

OR Logical OR; register-memory format

XOR Exclusive OR; register-memory format

String instructions Move between string operands; length given by a repeat prefix

MOVS Copies from string source to destination; may be repeated

LODS Loads a byte or word of a string into the A register

Figure J.41 Some typical operations on the 80x86. Many operations use register-memory format, where either the
source or the destination may be memory and the other may be a register or immediate operand.



J-54 � Appendix J  Survey of Instruction Set Architectures

3. Comparison, including instructions to send the result to the integer CPU so
that it can branch.

4. Transcendental instructions, including sine, cosine, log, and exponentiation.

Figure J.42 shows some of the 60 floating-point operations. We use the curly
brackets {} to show optional variations of the basic operations: {I} means there
is an integer version of the instruction, {P} means this variation will pop one
operand off the stack after the operation, and {R} means reverse the sense of the
operands in this operation. 

Not all combinations are provided. Hence

F{I}SUB{R}{P}

represents these instructions found in the 80x86:

FSUB
FISUB
FSUBR
FISUBR
FSUBP
FSUBRP

There are no pop or reverse pop versions of the integer subtract instructions.

Data transfer Arithmetic Compare Transcendental

F{I}LD mem/ST(i) F{I}ADD{P} mem/ST(i) F{I}COM{P}{P} FPATAN

F{I}ST{P} mem/ST(i) F{I}SUB{R}{P} mem/ST(i) F{I}UCOM{P}{P} F2XM1

FLDPI F{I}MUL{P} mem/ST(i) FSTSW AX/mem FCOS

FLD1 F{I}DIV{R}{P} mem/ST(i) FPTAN

FLDZ FSQRT FPREM

FABS FSIN

FRNDINT FYL2X

Figure J.42 The floating-point instructions of the 80x86. The first column shows the data transfer instructions,
which move data to memory or to one of the registers below the top of the stack. The last three operations push con-
stants on the stack: pi, 1.0, and 0.0. The second column contains the arithmetic operations described above. Note
that the last three operate only on the top of stack. The third column is the compare instructions. Since there are no
special floating-point branch instructions, the result of the compare must be transferred to the integer CPU via the
FSTSW instruction, either into the AX register or into memory, followed by an SAHF instruction to set the condition
codes. The floating-point comparison can then be tested using integer branch instructions. The final column gives
the higher-level floating-point operations.



J.3 The Intel 80x86 � J-55

Note that we get even more combinations when including the operand modes
for these operations. The floating-point add has these options, ignoring the inte-
ger and pop versions of the instruction:

FADD Both operands in stack, result replaces top of stack.
FADD ST(i) One source operand is ith register below the top of stack,

and the result replaces the top of stack.
FADD ST(i),ST One source operand is the top of stack, and the result

replaces ith register below the top of stack.
FADD mem32 One source operand is a 32-bit location in memory, and the

result replaces the top of stack.
FADD mem64 One source operand is a 64-bit location in memory, and the

result replaces the top of stack.

As mentioned earlier SSE2 presents a model of IEEE floating-point registers.

80x86 Instruction Encoding

Saving the worst for last, the encoding of instructions in the 8086 is complex,
with many different instruction formats. Instructions may vary from 1 byte, when
there are no operands, to up to 6 bytes, when the instruction contains a 16-bit
immediate and uses 16-bit displacement addressing. Prefix instructions increase
8086 instruction length beyond the obvious sizes. 

The 80386 additions expand the instruction size even further, as Figure J.43
shows. Both the displacement and immediate fields can be 32 bits long, two more
prefixes are possible, the opcode can be 16 bits long, and the scaled index mode
specifier adds another 8 bits. The maximum possible 80386 instruction is 17
bytes long.

Figure J.44 shows the instruction format for several of the example instruc-
tions in Figure J.40. The opcode byte usually contains a bit saying whether the
operand is a byte wide or the larger size, 16 bits or 32 bits depending on the
mode. For some instructions the opcode may include the addressing mode and
the register; this is true in many instructions that have the form register
←register op immediate. Other instructions use a “postbyte” or extra opcode
byte, labeled “mod, reg, r/m” in Figure J.43, which contains the addressing mode
information. This postbyte is used for many of the instructions that address mem-
ory. The based with scaled index uses a second postbyte, labeled “sc, index,
base” in Figure J.43.

The floating-point instructions are encoded in the escape opcode of the 8086
and the postbyte address specifier. The memory operations reserve 2 bits to
decide whether the operand is a 32- or 64-bit real or a 16- or 32-bit integer. Those
same 2 bits are used in versions that do not access memory to decide whether the
stack should be popped after the operation and whether the top of stack or a lower
register should get the result.

Alas, you cannot separate the restrictions on registers from the encoding of
the addressing modes in the 80x86. Hence Figures J.45 and J.46 show the encod-
ing of the two postbyte address specifiers for both 16- and 32-bit mode.



J-56 � Appendix J  Survey of Instruction Set Architectures

Putting It All Together: Measurements of Instruction Set Usage

In this section we present detailed measurements for the 80x86, and then com-
pare the measurements to MIPS for the same programs. To facilitate comparisons
among dynamic instruction set measurements, we use a subset of the SPEC92
programs. The 80x86 results were taken in 1994 using the Sun Solaris FOR-
TRAN and C compilers V2.0 and executed in 32-bit mode. These compilers were
comparable in quality to the compilers used for MIPS.

Remember that these measurements depend on the benchmarks chosen and
the compiler technology used. Although we feel that the measurements in this
section are reasonably indicative of the usage of these architectures, other pro-
grams may behave differently from any of the benchmarks here, and different
compilers may yield different results. In doing a real instruction set study, the
architect would want to have a much larger set of benchmarks, spanning as wide
an application range as possible, and consider the operating system and its usage

Figure J.43 The instruction format of the 8086 (black type) and the extensions for
the 80386 (shaded type). Every field is optional except the opcode.

Seg. override

Opcode

mod, reg, r/m

Disp8

Disp16

Disp24

Imm8

Imm16

Disp32

Imm24

Imm32

Opcode ext.

sc, index, base

Addr. override

Size override

Prefixes

Address
specifiers

Displacement

Immediate

Opcode

Repeat

Lock



J.3 The Intel 80x86 � J-57

of the instruction set. Single-user benchmarks like those measured here do not
necessarily behave in the same fashion as the operating system.

We start with an evaluation of the features of the 80x86 in isolation, and later
compare instruction counts with those of DLX.

Figure J.44 Typical 8086 instruction formats. The encoding of the postbyte is shown
in Figure J.45. Many instructions contain the 1-bit field w, which says whether the oper-
ation is a byte or a word. Fields of the form v/w or d/w are a d-field or v-field followed by
the w-field. The d-field in MOV is used in instructions that may move to or from memory
and shows the direction of the move. The field v in the SHL instruction indicates a
variable-length shift; variable-length shifts use a register to hold the shift count. The
ADD instruction shows a typical optimized short encoding usable only when the first
operand is AX. Overall instructions may vary from 1 to 6 bytes in length. 

JE

a.  JE PC + displacement

CALLF Segment numberOffset

b.  CALLF

c.  MOV  BX, [DI + 45]

PUSH

d.  PUSH SI

ADD w

e.  ADD AX, #6765

SHL
r-r

postbytev/w

f.  SHL BX, 1

g.  TEST DX, #42

Reg

4 4 8

6 8 8

8 16 16

2

5 3

4 13 16

Constant

6 2 8

7 1 8 8

Condition Displacement

MOV d/w Displacement
r-m

postbyte

TEST Postbyte Immediatew

Reg



J-58 � Appendix J  Survey of Instruction Set Architectures

w = 1 mod = 0 mod = 1 mod = 2

reg w = 0 16b 32b r/m 16b 32b 16b 32b 16b 32b mod = 3 

0 AL AX EAX 0 addr=BX+SI =EAX same same same same same

1 CL CX ECX 1 addr=BX+DI =ECX addr as addr as addr as addr as as

2 DL DX EDX 2 addr=BP+SI =EDX mod=0 mod=0 mod=0 mod=0 reg

3 BL BX EBX 3 addr=BP+SI =EBX + disp8 + disp8 + disp16 + disp32 field

4 AH SP ESP 4 addr=SI =(sib) SI+disp16 (sib)+disp8 SI+disp8 (sib)+disp32 "

5 CH BP EBP 5 addr=DI =disp32 DI+disp8 EBP+disp8 DI+disp16 EBP+disp32 "

6 DH SI ESI 6 addr=disp16 =ESI BP+disp8 ESI+disp8 BP+disp16 ESI+disp32 "

7 BH DI EDI 7 addr=BX =EDI BX+disp8 EDI+disp8 BX+disp16 EDI+disp32 "

Figure J.45 The encoding of the first address specifier of the 80x86, mod, reg, r/m. The first four columns show the
encoding of the 3-bit reg field, which depends on the w bit from the opcode and whether the machine is in 16- or 32-
bit mode. The remaining columns explain the mod and r/m fields. The meaning of the 3-bit r/m field depends on the
value in the 2-bit mod field and the address size. Basically, the registers used in the address calculation are listed in
the sixth and seventh columns, under mod = 0, with mod = 1 adding an 8-bit displacement and mod = 2 adding a
16- or 32-bit displacement, depending on the address mode. The exceptions are r/m = 6 when mod = 1 or mod = 2 in
16-bit mode selects BP plus the displacement; r/m = 5 when mod =1 or mod = 2 in 32-bit mode selects EBP plus dis-
placement; and r/m = 4 in 32-bit mode when mod ≠3 (sib) means use the scaled index mode shown in Figure J.46.
When mod = 3, the r/m field indicates a register, using the same encoding as the reg field combined with the w bit.

Index Base

0 EAX EAX

1 ECX ECX

2 EDX EDX

3 EBX EBX

4 no index ESP

5 EBP if mod = 0, disp32
if mod ≠ 0, EBP

6 ESI ESI

7 EDI EDI

Figure J.46 Based plus scaled index mode address specifier found in the 80386. This
mode is indicated by the (sib) notation in Figure J.45. Note that this mode expands the
list of registers to be used in other modes: register indirect using ESP comes from Scale
= 0, Index = 4, and Base = 4, and base displacement with EBP comes from Scale = 0,
Index = 5, and mod = 0. The two-bit scale field is used in this formula of the effective
address: Base register + 2Scale × Index register.



J.3 The Intel 80x86 � J-59

Measurements of 80x86 Operand Addressing

We start with addressing modes. Figure J.47 shows the distribution of the oper-
and types in the 80x86. These measurements cover the “second” operand of the
operation; for example, 

mov EAX, [45]

counts as a single memory operand. If the types of the first operand were
counted, the percentage of register usage would increase by about a factor of 1.5.

The 80x86 memory operands are divided into their respective addressing
modes in Figure J.48. Probably the biggest surprise is the popularity of the
addressing modes added by the 80386, the last four rows of the figure. They
account for about half of all the memory accesses. Another surprise is the popu-
larity of direct addressing. On most other machines, the equivalent of the direct

Integer average FP average

Register 45% 22%

Immediate 16% 6%

Memory 39% 72%

Figure J.47 Operand type distribution for the average of five SPECint92 programs
(compress, eqntott, espresso, gcc, li) and the average of five SPECfp92 programs
(doduc, ear, hydro2d, mdljdp2, su2cor).

Addressing mode Integer average FP average

Register indirect 13% 3%

Base + 8-bit disp. 31% 15%

Base + 32-bit disp. 9% 25%

Indexed 0% 0%

Based indexed + 8-bit disp. 0% 0%

Based indexed + 32-bit disp. 0% 1%

Base + scaled indexed 22% 7%

Base + scaled indexed + 8-bit disp. 0% 8%

Base + scaled indexed + 32-bit disp. 4% 4%

32-bit direct 20% 37%

Figure J.48 Operand addressing mode distribution by program. This chart does not
include addressing modes used by branches or control instructions.



J-60 � Appendix J  Survey of Instruction Set Architectures

addressing mode is rare. Perhaps the segmented address space of the 80x86
makes direct addressing more useful, since the address is relative to a base
address from the segment register.

These addressing modes largely determine the size of the Intel instructions.
Figure J.49 shows the distribution of instruction sizes. The average number of
bytes per instruction for integer programs is 2.8, with a standard deviation of 1.5,
and 4.1 with a standard deviation of 1.9 for floating-point programs. The differ-
ence in length arises partly from the differences in the addressing modes: Integer
programs rely more on the shorter register indirect and 8-bit displacement
addressing modes, while floating-point programs more frequently use the 80386
addressing modes with the longer 32-bit displacements.

Given that the floating-point instructions have aspects of both stacks and reg-
isters, how are they used? Figure J.50 shows that, at least for the compilers used
in this measurement, the stack model of execution is rarely followed. (See Sec-
tion K.3 for a historical explanation of this observation.)

Finally, Figures J.51 and J.52 show the instruction mixes for 10 SPEC92 pro-
grams.

Figure J.49 Averages of the histograms of 80x86 instruction lengths for five
SPECint92 programs and for five SPECfp92 programs, all running in 32-bit mode.

Percentage of instructions at each length

Instruction lengths

11

10

9

8

7

6

5

4

3

2

1

0%

1%

0%

0%

0%

0%

0%

0%

4%
2%

Floating-point
average

Integer average

8%
39%

4%
6%

7%
5%

18%
25%

19%
40%

10%
14%

0% 20% 40% 60%



J.3 The Intel 80x86 � J-61

Option doduc ear hydro2d mdljdp2 su2cor FP average

Stack (2nd operand ST (1)) 1.1% 0.0% 0.0% 0.2% 0.6% 0.4%

Register (2nd operand ST(i), i > 1) 17.3% 63.4% 14.2% 7.1% 30.7% 26.5%

Memory 81.6% 36.6% 85.8% 92.7% 68.7% 73.1%

Figure J.50 The percentage of instructions for the floating-point operations (add, sub, mul, div) that use each of
the three options for specifying a floating-point operand on the 80x86. The three options are (1) the strict stack
model of implicit operands on the stack, (2) register version naming an explicit operand that is not one of the top
two elements of the stack, and (3) memory operand.

Instruction doduc ear hydro2d mdljdp2 su2cor FP average

load 8.9% 6.5% 18.0% 27.6% 27.6% 20%

store 12.4% 3.1% 11.5% 7.8% 7.8% 8%

add 5.4% 6.6% 14.6% 8.8% 8.8% 10%

sub 1.0% 2.4% 3.3% 2.4% 2.4% 3%

mul 0%

div 0%

compare 1.8% 5.1% 0.8% 1.0% 1.0% 2%

mov reg-reg 3.2% 0.1% 1.8% 2.3% 2.3% 2%

load imm 0.4% 1.5% 0%

cond. branch 5.4% 8.2% 5.1% 2.7% 2.7% 5%

uncond branch 0.8% 0.4% 1.3% 0.3% 0.3% 1%

call 0.5% 1.6% 0.1% 0.1% 0%

return, jmp indirect 0.5% 1.6% 0.1% 0.1% 0%

shift 1.1% 4.5% 2.5% 2.5% 2%

and 0.8% 0.8% 0.7% 1.3% 1.3% 1%

or 0.1% 0.1% 0.1% 0%

other (xor, not, . . .) 0%

load FP 14.1% 22.5% 9.1% 12.6% 12.6% 14%

store  FP 8.6% 11.4% 4.1% 6.6% 6.6% 7%

add FP 5.8% 6.1% 1.4% 6.6% 6.6% 5%

sub  FP 2.2% 2.7% 3.1% 2.9% 2.9% 3%

mul FP 8.9% 8.0% 4.1% 12.0% 12.0% 9%

div FP 2.1% 0.8% 0.2% 0.2% 0%

compare FP 9.4% 6.9% 10.8% 0.5% 0.5% 5%

mov reg-reg FP 2.5% 0.8% 0.3% 0.8% 0.8% 1%

other (abs, sqrt, . . .) 3.9% 3.8% 4.1% 0.8% 0.8% 2%

Figure J.51 80x86 instruction mix for five SPECfp92 programs.



J-62 � Appendix J  Survey of Instruction Set Architectures

Comparative Operation Measurements

Figures J.53 and J.54 show the number of instructions executed for each of the 10
programs on the 80x86 and the ratio of instruction execution compared with that
for DLX: Numbers less than 1.0 mean the 80x86 executes fewer instructions than
DLX. The instruction count is surprisingly close to DLX for many integer pro-
grams, as you would expect a load-store instruction set architecture like DLX to
execute more instructions than a register-memory architecture like the 80x86.
The floating-point programs always have higher counts for the 80x86, presum-
ably due to the lack of floating-point registers and the use of a stack architecture. 

Instruction compress eqntott espresso gcc (cc1) li Int. average

load 20.8% 18.5% 21.9% 24.9% 23.3% 22%

store 13.8% 3.2% 8.3% 16.6% 18.7% 12%

add 10.3% 8.8% 8.15% 7.6% 6.1% 8%

sub 7.0% 10.6% 3.5% 2.9% 3.6% 5%

mul 0.1% 0%

div 0%

compare 8.2% 27.7% 15.3% 13.5% 7.7% 16%

mov reg-reg 7.9% 0.6% 5.0% 4.2% 7.8% 4%

load imm 0.5% 0.2% 0.6% 0.4% 0%

cond. branch 15.5% 28.6% 18.9% 17.4% 15.4% 20%

uncond. branch 1.2% 0.2% 0.9% 2.2% 2.2% 1%

call 0.5% 0.4% 0.7% 1.5% 3.2% 1%

return, jmp indirect 0.5% 0.4% 0.7% 1.5% 3.2% 1%

shift 3.8% 2.5% 1.7% 1%

and 8.4% 1.0% 8.7% 4.5% 8.4% 6%

or 0.6% 2.7% 0.4% 0.4% 1%

other (xor, not, . . .) 0.9% 2.2% 0.1% 1%

load FP 0%

store  FP 0%

add FP 0%

sub  FP 0%

mul FP 0%

div FP 0%

compare FP 0%

mov reg-reg FP 0%

other (abs, sqrt, . . .) 0%

Figure J.52 80x86 instruction mix for five SPECint92 programs.



J.3 The Intel 80x86 � J-63

Another question is the total amount of data traffic for the 80x86 versus DLX,
since the 80x86 can specify memory operands as part of operations while DLX
can only access via loads and stores. Figures J.53 and J.54 also show the data
reads, data writes, and data read-modify-writes for these 10 programs. The total
accesses ratio to DLX of each memory access type is shown in the bottom rows,
with the read-modify-write counting as one read and one write. The 80x86

compress eqntott espresso gcc (cc1) li Int. avg.

Instructions executed on 80x86 (millions) 2226 1203 2216 3770 5020

Instructions executed ratio to DLX 0.61 1.74 0.85 0.96 0.98 1.03

Data reads on 80x86 (millions) 589 229 622 1079 1459

Data writes on 80x86 (millions) 311 39 191 661 981

Data read-modify-writes on 80x86 (millions) 26 1 129 48 48

Total data reads on 80x86 (millions) 615 230 751 1127 1507

Data read ratio to DLX 0.85 1.09 1.38 1.25 0.94 1.10

Total data writes on 80x86 (millions) 338 40 319 709 1029

Data write ratio to DLX 1.67 9.26 2.39 1.25 1.20 3.15

Total data accesses on 80x86 (millions) 953 269 1070 1836 2536

Data access ratio to DLX 1.03 1.25 1.58 1.25 1.03 1.23

Figure J.53 Instructions executed and data accesses on 80x86 and ratios compared to DLX for five SPECint92
programs.

doduc ear hydro2d mdljdp2 su2cor FP average

Instructions executed on 80x86 (millions) 1223 15,220 13,342 6197 6197

Instructions executed ratio to DLX 1.19 1.19 2.53 2.09 1.62 1.73

Data reads on 80x86 (millions) 515 6007 5501 3696 3643

Data writes on 80x86 (millions) 260 2205 2085 892 892

Data read-modify-writes on 80x86 (millions) 1 0 189 124 124

Total data reads on 80x86 (millions) 517 6007 5690 3820 3767

Data read ratio to DLX 2.04 2.36 4.48 4.77 3.91 3.51

Total data writes on 80x86 (millions) 261 2205 2274 1015 1015

Data write ratio to DLX 3.68 33.25 38.74 16.74 9.35 20.35

Total data accesses on 80x86 (millions) 778 8212 7965 4835 4782

Data access ratio to DLX 2.40 3.14 5.99 5.73 4.47 4.35

Figure J.54 Instructions executed and data accesses for five SPECfp92 programs on 80x86 and ratio to DLX.



J-64 � Appendix J  Survey of Instruction Set Architectures

performs about two to four times as many data accesses as DLX for floating-
point programs, and 1.25 times as many for integer programs. Finally,
Figure J.55 shows the percentage of instructions in each category for 80x86 and
DLX. 

Concluding Remarks

Beauty is in the eye of the beholder.

Old Adage

As we have seen, “orthogonal” is not a term found in the Intel architectural dic-
tionary. To fully understand which registers and which addressing modes are
available, you need to see the encoding of all addressing modes and sometimes
the encoding of the instructions. 

Some argue that the inelegance of the 80x86 instruction set is unavoidable,
the price that must be paid for rampant success by any architecture. We reject that
notion. Obviously no successful architecture can jettison features that were added
in previous implementations, and over time some features may be seen as unde-
sirable. The awkwardness of the 80x86 began at its core with the 8086 instruction
set and was exacerbated by the architecturally inconsistent expansions of the
8087, 80286, and 80386. 

A counterexample is the IBM 360/370 architecture, which is much older than
the 80x86. It dominates the mainframe market just as the 80x86 dominates the
PC market. Due undoubtedly to a better base and more compatible enhance-
ments, this instruction set makes much more sense than the 80x86 more than 30
years after its first implementation. 

For better or worse, Intel had a 16-bit microprocessor years before its com-
petitors’ more elegant architectures, and this head start led to the selection of the
8086 as the CPU for the IBM PC. What it lacks in style is made up in quantity,
making the 80x86 beautiful from the right perspective.

Integer average FP average

Category x86 DLX x86 DLX

Total data transfer 34% 36% 28% 2%

Total integer arithmetic 34% 31% 16% 12%

Total control 24% 20% 6% 10%

Total logical 8% 13% 3% 2%

Total FP data transfer 0% 0% 22% 33%

Total FP arithmetic 0% 0% 25% 41%

Figure J.55 Percentage of instructions executed by category for 80x86 and DLX for
the averages of five SPECint92 and SPECfp92 programs of Figures J.53 and J.54.



J.4 The VAX Architecture � J-65

The saving grace of the 80x86 is that its architectural components are not too
difficult to implement, as Intel has demonstrated by rapidly improving perfor-
mance of integer programs since 1978. High floating-point performance is a
larger challenge in this architecture.

VAX: the most successful minicomputer design in industry history . . .  the VAX was
probably the hacker’s favorite machine. . . . Especially noted for its large, assem-
bler-programmer-friendly instruction set—an asset that became a liability after
the RISC revolution.

Eric Raymond
The New Hacker’s Dictionary, 1991

Introduction

To enhance your understanding of instruction set architectures, we chose the
VAX as the representative Complex Instruction Set Computer (CISC) because it
is so different from MIPS and yet still easy to understand. By seeing two such
divergent styles, we are confident that you will be able to learn other instruction
sets on your own.

At the time the VAX was designed, the prevailing philosophy was to create
instruction sets that were close to programming languages in order to simplify
compilers. For example, because programming languages had loops, instruction
sets should have loop instructions. As VAX architect William Strecker said
(“VAX-11/780—A Virtual Address Extension to the PDP-11 Family,” AFIPS
Proc., National Computer Conference, 1978):

A major goal of the VAX-11 instruction set was to provide for effective compiler
generated code. Four decisions helped to realize this goal: . . . 1) A very regular
and consistent treatment of operators. . . . 2) An avoidance of instructions unlikely
to be generated by a compiler. . . . 3) Inclusions of several forms of common
operators. . . . 4) Replacement of common instruction sequences with single
instructions. Examples include procedure calling, multiway branching, loop con-
trol, and array subscript calculation.

Recall that DRAMs of the mid-1970s contained less than 1/1000th the capac-
ity of today’s DRAMs, so code space was also critical. Hence, another prevailing
philosophy was to minimize code size, which is de-emphasized in fixed-length
instruction sets like MIPS. For example, MIPS address fields always use 16 bits,
even when the address is very small. In contrast, the VAX allows instructions to
be a variable number of bytes, so there is little wasted space in address fields.

Whole books have been written just about the VAX, so this VAX extension
cannot be exhaustive. Hence, the following sections describe only a few of its
addressing modes and instructions. To show the VAX instructions in action, later

J.4 The VAX Architecture



J-66 � Appendix J  Survey of Instruction Set Architectures

sections show VAX assembly code for two C procedures. The general style will
be to contrast these instructions with the MIPS code that you are already familiar
with.

The differing goals for VAX and MIPS have led to very different architec-
tures. The VAX goals, simple compilers and code density, led to the powerful
addressing modes, powerful instructions, and efficient instruction encoding. The
MIPS goals were high performance via pipelining, ease of hardware implementa-
tion, and compatibility with highly optimizing compilers. The MIPS goals led to
simple instructions, simple addressing modes, fixed-length instruction formats,
and a large number of registers.

VAX Operands and Addressing Modes

The VAX is a 32-bit architecture, with 32-bit-wide addresses and 32-bit-wide
registers. Yet the VAX supports many other data sizes and types, as Figure J.56
shows. Unfortunately, VAX uses the name “word” to refer to 16-bit quantities; in
this text a word means 32 bits. Figure J.56 shows the conversion between the
MIPS data type names and the VAX names. Be careful when reading about VAX
instructions, as they refer to the names of the VAX data types.

The VAX provides 16 32-bit registers. The VAX assembler uses the notation
r0, r1, . . . , r15 to refer to these registers, and we will stick to that notation. Alas,
4 of these 16 registers are effectively claimed by the instruction set architecture.
For example, r14 is the stack pointer (sp) and r15 is the program counter (pc).
Hence, r15 cannot be used as a general-purpose register, and using r14 is very
difficult because it interferes with instructions that manipulate the stack. The
other dedicated registers are r12, used as the argument pointer (ap), and r13,
used as the frame pointer (fp); their purpose will become clear later. (Like MIPS,
the VAX assembler accepts either the register number or the register name.)

Bits Data type MIPS name VAX name

08 Integer Byte Byte

16 Integer Half word Word

32 Integer Word Long word

32 Floating point Single precision F_floating

64 Integer Double word Quad word

64 Floating point Double precision D_floating or G_floating

8n Character string Character Character 

Figure J.56 VAX data types, their lengths, and names. The first letter of the VAX type
(b, w, l, f, q, d, g, c) is often used to complete an instruction name. Examples of move
instructions include movb, movw, movl, movf, movq, movd, movg, and movc3. Each move
instruction transfers an operand of the data type indicated by the letter following  mov.



J.4 The VAX Architecture � J-67

VAX addressing modes include those discussed in Appendix B, which has all
the MIPS addressing modes: register, displacement, immediate, and PC-relative.
Moreover, all these modes can be used for jump addresses or for data addresses. 

But that’s not all the addressing modes. To reduce code size, the VAX has
three lengths of addresses for displacement addressing: 8-bit, 16-bit, and 32-bit
addresses called, respectively, byte displacement, word displacement, and long
displacement addressing. Thus, an address can be not only as small as possible,
but also as large as necessary; large addresses need not be split, so there is no
equivalent to the MIPS lui instruction (see Figure B.24 on page B-37).

Those are still not all the VAX addressing modes. Several have a deferred
option, meaning that the object addressed is only the address of the real object,
requiring another memory access to get the operand. This addressing mode is
called indirect addressing in other machines. Thus, register deferred, autoincre-
ment deferred, and byte/word/long displacement deferred are other addressing
modes to choose from. For example, using the notation of the VAX assembler, r1
means the operand is register 1 and (r1) means the operand is the location in
memory pointed to by r1. 

There is yet another addressing mode. Indexed addressing automatically con-
verts the value in an index operand to the proper byte address to add to the rest of
the address. For a 32-bit word, we needed to multiply the index of a 4-byte quan-
tity by 4 before adding it to a base address. Indexed addressing, called scaled
addressing on some computers, automatically multiplies the index of a 4-byte
quantity by 4 as part of the address calculation.

To cope with such a plethora of addressing options, the VAX architecture sep-
arates the specification of the addressing mode from the specification of the oper-
ation. Hence, the opcode supplies the operation and the number of operands, and
each operand has its own addressing mode specifier. Figure J.57 shows the name,
assembler notation, example, meaning, and length of the address specifier.

The VAX style of addressing means that an operation doesn’t know where its
operands come from; a VAX add instruction can have three operands in registers,
three operands in memory, or any combination of registers and memory operands.

Example How long is the following instruction?

addl3 r1,737(r2),(r3)[r4]

The name addl3 means a 32-bit add instruction with three operands. Assume the
length of the VAX opcode is 1 byte.

Answer The first operand specifier—r1— indicates register addressing and is 1 byte long.
The second operand specifier—737(r2)—indicates displacement addressing and
has two parts: The first part is a byte that specifies the word displacement
addressing mode and base register (r2); the second part is the 2-byte long dis-
placement (737). The third operand specifier—(r3)[r4]—also has two parts:
The first byte specifies register deferred addressing mode ((r3)), and the second
byte specifies the Index register and the use of indexed addressing ([r4]).
Thus, the total length of the instruction is 1 + (1) + (1 + 2) + (1 + 1) = 7 bytes.



J-68 � Appendix J  Survey of Instruction Set Architectures

In this example instruction, we show the VAX destination operand on the left
and the source operands on the right, just as we show MIPS code. The VAX
assembler actually expects operands in the opposite order, but we felt it would be
less confusing to keep the destination on the left for both machines. Obviously,
left or right orientation is arbitrary; the only requirement is consistency.

Elaboration Because the PC is one of the 16 registers that can be selected in a VAX address-
ing mode, 4 of the 22 VAX addressing modes are synthesized from other address-
ing modes. Using the PC as the chosen register in each case, immediate
addressing is really autoincrement, PC-relative is displacement, absolute is auto-
increment deferred, and relative deferred is displacement deferred.

Encoding VAX Instructions

Given the independence of the operations and addressing modes, the encoding of
instructions is quite different from MIPS. 

VAX instructions begin with a single byte opcode containing the operation
and the number of operands. The operands follow the opcode. Each operand
begins with a single byte, called the address specifier, that describes the address-
ing mode for that operand. For a simple addressing mode, such as register

Addressing mode name Syntax Example Meaning
Length of address 
specifier in bytes

Literal #value #–1 –1 1 (6-bit signed value)

Immediate #value #100 100 1 + length of the 
immediate

Register rn r3 r3 1

Register deferred (rn) (r3) Memory[r3] 1

Byte/word/long 
displacement

Displacement (rn) 100(r3) Memory[r3 + 100] 1 + length of the
displacement

Byte/word/long 
displacement deferred

@displacement (rn) @100(r3) Memory[Memory [r3 + 100]] 1 + length of the
displacement

Indexed (scaled) Base mode [rx] (r3)[r4] Memory[r3 + r4 × d]
(where d is data size in bytes)

1 + length of base 
addressing mode

Autoincrement (rn)+ (r3)+ Memory[r3]; r3 = r3 + d 1

Autodecrement – (rn) –(r3) r3 = r3 – d; Memory[r3] 1

Autoincrement deferred @(rn)+ @(r3)+ Memory[Memory[r3]]; r3 = r3 + d 1

Figure J.57 Definition and length of the VAX operand specifiers. The length of each addressing mode is 1 byte
plus the length of any displacement or immediate field needed by the mode. Literal mode uses a special 2-bit tag
and the remaining 6 bits encode the constant value. If the constant is too big, it must use the immediate addressing
mode. Note the length of an immediate operand is dictated by the length of the data type indicated in the opcode,
not the value of the immediate. The symbol d in the last four modes represents the length of the data in bytes; d is 4
for 32-bit add.



J.4 The VAX Architecture � J-69

addressing, this byte specifies the register number as well as the mode (see the
rightmost column in Figure J.57). In other cases, this initial byte can be followed
by many more bytes to specify the rest of the address information.

As a specific example, let’s show the encoding of the add instruction from the
example on page J-67:

addl3 r1,737(r2),(r3)[r4]

Assume that this instruction starts at location 201. 
Figure J.58 shows the encoding. Note that the operands are stored in memory

in opposite order to the assembly code above. The execution of VAX instructions
begins with fetching the source operands, so it makes sense for them to come
first. Order is not important in fixed-length instructions like MIPS, since the
source and destination operands are easily found within a 32-bit word.

The first byte, at location 201, is the opcode. The next byte, at location 202, is
a specifier for the index mode using register r4. Like many of the other specifiers,
the left 4 bits of the specifier give the mode and the right 4 bits give the register
used in that mode. Since addl3 is a 4-byte operation, r4 will be multiplied by 4
and added to whatever address is specified next. In this case it is register deferred
addressing using register r3. Thus bytes 202 and 203 combined define the third
operand in the assembly code.

The following byte, at address 204, is a specifier for word displacement
addressing using register r2 as the base register. This specifier tells the VAX that
the following two bytes, locations 205 and 206, contain a 16-bit address to be
added to r2.

The final byte of the instruction gives the destination operand, and this speci-
fier selects register addressing using register r1.

Such variability in addressing means that a single VAX operation can have
many different lengths; for example, an integer add varies from 3 bytes to 19
bytes. VAX implementations must decode the first operand before they can find
the second, and so implementors are strongly tempted to take 1 clock cycle to

Byte address Contents at each byte Machine code

201 opcode containing addl3 c1hex

202 index mode specifier for [r4] 44hex

203 register indirect mode specifier for (r3) 63hex

204 word displacement mode specifier using r2 as base c2hex

205 the 16-bit constant 737 e1hex

206 02hex

207 register mode specifier for r1 51hex

Figure J.58 The encoding of the VAX instruction addl3 r1,737(r2),(r3)[r4],
assuming it starts at address 201. To satisfy your curiosity, the right column shows the
actual VAX encoding in hexadecimal notation. Note that the 16-bit constant 737ten
takes 2 bytes.



J-70 � Appendix J  Survey of Instruction Set Architectures

decode each operand; thus this sophisticated instruction set architecture can
result in higher clock cycles per instruction, even when using simple addresses.

VAX Operations

In keeping with its philosophy, the VAX has a large number of operations as well
as a large number of addressing modes. We review a few here to give the flavor of
the machine.

Given the power of the addressing modes, the VAX move instruction per-
forms several operations found in other machines. It transfers data between any
two addressable locations and subsumes load, store, register-register moves, and
memory-memory moves as special cases. The first letter of the VAX data type (b,
w, l, f, q, d, g, c in Figure J.56) is appended to the acronym mov to determine the
size of the data. One special move, called move address, moves the 32-bit
address of the operand rather than the data. It uses the acronym mova.

The arithmetic operations of MIPS are also found in the VAX, with two major
differences. First, the type of the data is attached to the name. Thus addb, addw,
and addl operate on 8-bit, 16-bit, and 32-bit data in memory or registers, respec-
tively; MIPS has a single add instruction that operates only on the full 32-bit reg-
ister. The second difference is that to reduce code size, the add instruction
specifies the number of unique operands; MIPS always specifies three even if one
operand is redundant. For example, the MIPS instruction

add $1, $1, $2

takes 32 bits like all MIPS instructions, but the VAX instruction

addl2 r1, r2

uses r1 for both the destination and a source, taking just 24 bits: 8 bits for the
opcode and 8 bits each for the two register specifiers.

Number of Operations

Now we can show how VAX instruction names are formed:

The operation add works with data types byte, word, long, float, and double and
comes in versions for either 2 or 3 unique operands, so the following instructions
are all found in the VAX:

addb2 addw2 addl2 addf2 addd2
addb3 addw3 addl3 addf3 addd3

(operation)(datatype) 2
3 

 



J.4 The VAX Architecture � J-71

Accounting for all addressing modes (but ignoring register numbers and immedi-
ate values) and limiting to just byte, word, and long, there are more than 30,000
versions of integer add in the VAX; MIPS has just 4!

Another reason for the large number of VAX instructions is the instructions
that either replace sequences of instructions or take fewer bytes to represent a sin-
gle instruction. Here are four such examples (* means the data type):

The push instruction in the last row is exactly the same as using the move instruc-
tion with autodecrement addressing on the stack pointer:

movl – (sp), r3

Brevity is the advantage of pushl: It is 1 byte shorter since sp is implied.

Branches, Jumps, and Procedure Calls

The VAX branch instructions are related to the arithmetic instructions because
the branch instructions rely on condition codes. Condition codes are set as a side
effect of an operation, and they indicate whether the result is positive, negative,
zero, or if an overflow occurred. Most instructions set the VAX condition codes
according to their result; instructions without results, such as branches, do not.
The VAX condition codes are N (Negative), Z (Zero), V (oVerflow), and C
(Carry). There is also a compare instruction cmp* just to set the condition codes
for a subsequent branch.

The VAX branch instructions include all conditions. Popular branch instruc-
tions include beql(=), bneq(≠), blss(<), bleq(≤), bgtr(>), and bgeq(≥), which
do just what you would expect. There are also unconditional branches whose
name is determined by the size of the PC-relative offset. Thus brb (branch byte)
has an 8-bit displacement and brw (branch word) has a 16-bit displacement.

The final major category we cover here is the procedure call and return
instructions. Unlike the MIPS architecture, these elaborate instructions can take
dozens of clock cycles to execute. The next two sections show how they work,
but we need to explain the purpose of the pointers associated with the stack
manipulated by calls and ret. The stack pointer, sp, is just like the stack pointer
in MIPS; it points to the top of the stack.The argument pointer, ap, points to the
base of the list of arguments or parameters in memory that are passed to the pro-
cedure. The frame pointer, fp, points to the base of the local variables of the pro-
cedure that are kept in memory (the stack frame). The VAX call and return
instructions manipulate these pointers to maintain the stack in proper condition

VAX operation Example Meaning

clr* clrl r3 r3 = 0

inc* incl r3 r3 = r3 + 1

dec* decl r3 r3 = r3 – 1

push* pushl r3 sp = sp – 4; Memory[sp] = r3;



J-72 � Appendix J  Survey of Instruction Set Architectures

across procedure calls and to provide convenient base registers to use when
accessing memory operands. As we shall see, call and return also save and restore
the general-purpose registers as well as the program counter. Figure J.59 gives a
further sampling of the VAX instruction set.

An Example to Put It All Together: swap

To see programming in VAX assembly language, we translate two C procedures,
swap and sort. The C code for swap is reproduced in Figure J.60. The next sec-
tion covers sort.

We describe the swap procedure in three general steps of assembly language
programming:

1. Allocate registers to program variables

2. Produce code for the body of the procedure

3. Preserve registers across the procedure invocation

The VAX code for these procedures is based on code produced by the VMS C
compiler using optimization.

Register Allocation for swap

In contrast to MIPS, VAX parameters are normally allocated to memory, so this
step of assembly language programming is more properly called “variable alloca-
tion.” The standard VAX convention on parameter passing is to use the stack. The
two parameters, v[] and k, can be accessed using register ap, the argument
pointer: the address 4(ap) corresponds to v[] and 8(ap) corresponds to k.
Remember that with byte addressing the address of sequential 4-byte words dif-
fers by 4. The only other variable is temp, which we associate with register r3. 

Code for the Body of the Procedure swap

The remaining lines of C code in swap are

temp = v[k];
v[k] = v[k + 1];
v[k + 1] = temp;

Since this program uses v[] and k several times, to make the programs run faster
the VAX compiler first moves both parameters into registers:

movl r2, 4(ap) ;r2 = v[]
movl r1, 8(ap) ;r1 = k



J.4 The VAX Architecture � J-73

Instruction type Example Instruction meaning

Data transfers Move data between byte, half-word, word, or double-word operands; * is data type

mov* Move between two operands

movzb* Move a byte to a half word or word, extending it with zeros

mova* Move the 32-bit address of an operand; data type is last

push* Push operand onto stack

Arithmetic/logical Operations on integer or logical bytes, half words (16 bits), words (32 bits); * is data 
type 

add*_ Add with 2 or 3 operands

cmp* Compare and set condition codes

tst* Compare to zero and set condition codes

ash* Arithmetic shift

clr* Clear

cvtb* Sign-extend byte to size of data type

Control Conditional and unconditional branches

beql, bneq Branch equal, branch not equal

bleq, bgeq Branch less than or equal, branch greater than or equal

brb, brw Unconditional branch with an 8-bit or 16-bit address

jmp Jump using any addressing mode to specify target

aobleq Add one to operand; branch if result ≤ second operand

case_ Jump based on case selector

Procedure Call/return from procedure

calls Call procedure with arguments on stack (see “A Longer 
Example: sort” on page J-76)

callg Call procedure with FORTRAN-style parameter list

jsb Jump to subroutine, saving return address (like MIPS jal)

ret Return from procedure call

Floating point Floating-point operations on D, F, G, and H formats

addd_ Add double-precision D-format floating numbers

subd_ Subtract double-precision D-format floating numbers

mulf_ Multiply single-precision F-format floating point

polyf Evaluate a polynomial using table of coefficients in F format

Other Special operations 

crc Calculate cyclic redundancy check

insque Insert a queue entry into a queue

Figure J.59 Classes of VAX instructions with examples. The asterisk stands for multiple data types: b, w, l, d, f, g, h,
and q. The underline, as in addd_, means there are 2-operand (addd2) and 3-operand (addd3) forms of this instruc-
tion.



J-74 � Appendix J  Survey of Instruction Set Architectures

Note that we follow the VAX convention of using a semicolon to start a com-
ment; the MIPS comment symbol # represents a constant operand in VAX assem-
bly language.

The VAX has indexed addressing, so we can use index k without converting it
to a byte address. The VAX code is then straightforward:

movl r3, (r2)[r1] ;r3 (temp) = v[k]
addl3 r0, #1,8(ap) ;r0 = k + 1
movl (r2)[r1],(r2)[r0] ;v[k] = v[r0] (v[k + 1])
movl (r2)[r0],r3 ;v[k + 1] = r3 (temp)

Unlike the MIPS code, which is basically two loads and two stores, the key VAX
code is one memory-to-register move, one memory-to-memory move, and one
register-to-memory move. Note that the addl3 instruction shows the flexibility of
the VAX addressing modes: It adds the constant 1 to a memory operand and
places the result in a register.

Now we have allocated storage and written the code to perform the opera-
tions of the procedure. The only missing item is the code that preserves registers
across the routine that calls swap. 

Preserving Registers across Procedure Invocation of swap

The VAX has a pair of instructions that preserve registers, calls and ret. This
example shows how they work.

The VAX C compiler uses a form of callee convention. Examining the code
above, we see that the values in registers r0, r1, r2, and r3 must be saved so that
they can later be restored. The calls instruction expects a 16-bit mask at the
beginning of the procedure to determine which registers are saved: if bit i is set in
the mask, then register i is saved on the stack by the calls instruction. In addi-
tion, calls saves this mask on the stack to allow the return instruction (ret) to
restore the proper registers. Thus the calls executed by the caller does the sav-
ing, but the callee sets the call mask to indicate what should be saved.

One of the operands for calls gives the number of parameters being passed,
so that calls can adjust the pointers associated with the stack: the argument

swap(int v[], int k)
{
   int temp;
   temp = v[k];
   v[k] = v[k + 1];
   v[k + 1] = temp;
}

Figure J.60 A C procedure that swaps two locations in memory. This procedure will
be used in the sorting example in the next section.



J.4 The VAX Architecture � J-75

pointer (ap), frame pointer (fp), and stack pointer (sp). Of course, calls also
saves the program counter so that the procedure can return! 

Thus, to preserve these four registers for swap, we just add the mask at the
beginning of the procedure, letting the calls instruction in the caller do all the
work:

.word ^m<r0,r1,r2,r3> ;set bits in mask for 0,1,2,3

This directive tells the assembler to place a 16-bit constant with the proper bits
set to save registers r0 though r3.

The return instruction undoes the work of calls. When finished, ret sets the
stack pointer from the current frame pointer to pop everything calls placed on
the stack. Along the way, it restores the register values saved by calls, including
those marked by the mask and old values of the fp, ap, and pc.

To complete the procedure swap, we just add one instruction:

ret ;restore registers and return

The Full Procedure swap

We are now ready for the whole routine. Figure J.61 identifies each block of code
with its purpose in the procedure, with the MIPS code on the left and the VAX
code on the right. This example shows the advantage of the scaled indexed

MIPS versus VAX

Saving register

swap: addi $29,$29, –12
sw  $2, 0($29)
sw $15, 4($29)
sw $16, 8($29)

swap: .word ^m<r0,r1,r2,r3>

Procedure body

muli $2, $5,4
add $2, $4,$2
lw $15, 0($2)
lw $16, 4($2)
sw $16, 0($2)
sw $15, 4($2)

movl r2, 4(a)
movl r1, 8(a) 
movl r3, (r2)[r1]
addl3 r0, #1,8(ap)
movl (r2)[r1],(r2)[r0]
movl (r2)[r0],r3

Restoring registers

lw  $2, 0($29)
lw $15, 4($29)
lw $16, 8($29)
addi $29,$29, 12

Procedure return

jr $31 ret

Figure J.61 MIPS versus VAX assembly code of the procedure swap in Figure J.60 on
page J-74.



J-76 � Appendix J  Survey of Instruction Set Architectures

addressing and the sophisticated call and return instructions of the VAX in reduc-
ing the number of lines of code. The 17 lines of MIPS assembly code became 8
lines of VAX assembly code. It also shows that passing parameters in memory
results in extra memory accesses.

Keep in mind that the number of instructions executed is not the same as per-
formance; the fallacy on page J-81 makes this point.

Note that VAX software follows a convention of treating registers r0 and r1
as temporaries that are not saved across a procedure call, so the VMS C compiler
does include registers r0 and r1 in the register saving mask. Also, the C compiler
should have used r1 instead of 8(ap) in the addl3 instruction; such examples
inspire computer architects to try to write compilers!

A Longer Example: sort

We show the longer example of the sort procedure. Figure J.62 shows the C ver-
sion of the program. Once again we present this procedure in several steps, con-
cluding with a side-by-side comparison to MIPS code.

Register Allocation for sort

The two parameters of the procedure sort, v and n, are found in the stack in
locations 4(ap) and 8(ap), respectively. The two local variables are assigned to
registers: i to r6 and j to r4. Because the two parameters are referenced
frequently in the code, the VMS C compiler copies the address of these parame-
ters into registers upon entering the procedure:

moval r7,8(ap) ;move address of n into r7
moval r5,4(ap) ;move address of v into r5

It would seem that moving the value of the operand to a register would be more
useful than its address, but once again we bow to the decision of the VMS C
compiler. Apparently the compiler cannot be sure that v and n don’t overlap in
memory.

Figure J.62 A C procedure that performs a bubble sort on the array v. 

sort (int v[], int n)
{
    int i, j;
    for (i = 0; i < n; i = i + 1) {
    for (j = i – 1; j >= 0 && v[j] > v[j + 1]; j = j – 1) 
      { swap(v,j);
    }
  }
}



J.4 The VAX Architecture � J-77

Code for the Body of the sort Procedure

The procedure body consists of two nested for loops and a call to swap, which
includes parameters. Let’s unwrap the code from the outside to the middle.

The Outer Loop

The first translation step is the first for loop:

for (i = 0; i < n; i = i + 1) {

Recall that the C for statement has three parts: initialization, loop test, and itera-
tion increment. It takes just one instruction to initialize i to 0, the first part of the
for statement:

clrl r6 ;i = 0

It also takes just one instruction to increment i, the last part of the for:

incl r6 ;i = i + 1

The loop should be exited if i < n is false, or said another way, exit the loop if
i ≥ n. This test takes two instructions:

for1tst: cmpl r6,(r7);compare r6 and memory[r7] (i:n)
bgeq exit1 ;go to exit1 if r6 ≥ mem[r7] (i ≥ n)

Note that cmpl sets the condition codes for use by the conditional branch
instruction bgeq. 

The bottom of the loop just jumps back to the loop test:

brb for1tst ;branch to test of outer loop
exit1:

The skeleton code of the first for loop is then

clrl r6 ;i = 0
for1tst: cmpl r6,(r7) ;compare r6 and memory[r7] (i:n)

bgeq exit1 ;go to exit1 if r6 ≥ mem[r7] (i ≥ n)
...
(body of first for loop)
...

incl r6 ;i = i + 1
brb for1tst ;branch to test of outer loop

exit1:

The Inner Loop 

The second for loop is

 for (j = i – 1; j >= 0 && v[j] > v[j + 1]; j = j – 1) {



J-78 � Appendix J  Survey of Instruction Set Architectures

The initialization portion of this loop is again one instruction:

subl3 r4,r6,#1  ;j = i – 1

The decrement of j is also one instruction:

decl r4 ;j = j – 1

The loop test has two parts. We exit the loop if either condition fails, so the first
test must exit the loop if it fails (j < 0):

for2tst:blss exit2 ;go to exit2 if r4 < 0 (j < 0)

Notice that there is no explicit comparison. The lack of comparison is a benefit of
condition codes, with the conditions being set as a side effect of the prior instruc-
tion. This branch skips over the second condition test. 

The second test exits if v[j] > v[j + 1] is false, or exits if v[j] ≤ v[j + 1].
First we load v and put j + 1 into registers:

movl r3,(r5) ;r3 = Memory[r5] (r3 = v)
addl3 r2,r4,#1 ;r2 = r4 + 1 (r2 = j + 1)

Register indirect addressing is used to get the operand pointed to by r5.
Once again the index addressing mode means we can use indices without

converting to the byte address, so the two instructions for v[j] ≤ v[j + 1] are

cmpl (r3)[r4],(r3)[r2] ;v[r4] : v[r2] (v[j]:v[j + 1])
bleq  exit2 ;go to exit2 if v[j] ≤ v[j + 1]

The bottom of the loop jumps back to the full loop test:

brb for2tst # jump to test of inner loop

Combining the pieces, the second for loop looks like this:

subl3 r4,r6, #1 ;j = i – 1
for2tst: blss exit2 ;go to exit2 if r4 < 0 (j < 0)

movl r3,(r5) ;r3 = Memory[r5] (r3 = v)
addl3 r2,r4,#1 ;r2 = r4 + 1 (r2 = j + 1)
cmpl (r3)[r4],(r3)[r2];v[r4] : v[r2]
bleq  exit2 ;go to exit2 if v[j] ≤ [j+1]

...
(body of second for loop)
...

decl r4 ;j = j – 1
brb for2tst ;jump to test of inner loop

exit2:

Notice that the instruction blss (at the top of the loop) is testing the condition
codes based on the new value of r4 (j), set either by the subl3 before entering
the loop or by the decl at the bottom of the loop.



J.4 The VAX Architecture � J-79

The Procedure Call

The next step is the body of the second for loop:

swap(v,j);

Calling swap is easy enough:

calls #2,swap

The constant 2 indicates the number of parameters pushed on the stack.

Passing Parameters

The C compiler passes variables on the stack, so we pass the parameters to swap
with these two instructions:

pushl (r5) ;first swap parameter is v
pushl  r4 ;second swap parameter is j

Register indirect addressing is used to get the operand of the first instruction.

Preserving Registers across Procedure Invocation of sort

The only remaining code is the saving and restoring of registers using the callee
save convention. This procedure uses registers r2 through r7, so we add a mask
with those bits set:

.word ^m<r2,r3,r4,r5,r6,r7>; set mask for registers 2-7

Since ret will undo all the operations, we just tack it on the end of the procedure.

The Full Procedure sort

Now we put all the pieces together in Figure J.63. To make the code easier to fol-
low, once again we identify each block of code with its purpose in the procedure
and list the MIPS and VAX code side by side. In this example, 11 lines of the
sort procedure in C become the 44 lines in the MIPS assembly language and 20
lines in VAX assembly language. The biggest VAX advantages are in register sav-
ing and restoring and indexed addressing. 

Fallacies and Pitfalls

The ability to simplify means to eliminate the unnecessary so that the necessary
may speak.

Hans Hoffman
Search for the Real, 1967



J-80 � Appendix J  Survey of Instruction Set Architectures

MIPS versus VAX

Saving registers

sort: addi $29,$29, –36
sw $15, 0($29)
sw $16, 4($29)
sw $17, 8($29)
sw $18,12($29)
sw $19,16($29)
sw $20,20($29)
sw $24,24($29)
sw $25,28($29)
sw $31,32($29)

sort: .word ^m<r2,r3,r4,r5,r6,r7>

Procedure body

Move parameters move $18, $4
move $20, $5

moval r7,8(ap)
moval r5,4(ap)

Outer loop add $19, $0, $0
for1tst: slt $8, $19, $20

beq $8, $0, exit1

clrl r6
for1tst: cmpl r6,(r7)

bgeq exit1

Inner loop addi $17, $19, –1
for2tst: slti $8, $17, 0

bne $8, $0, exit2
muli $15, $17, 4
add $16, $18, $15
lw $24, 0($16)
lw $25, 4($16)
slt $8, $25, $24
beq $8, $0, exit2

subl3 r4,r6,#1
for2tst:

blss exit2
movl r3,(r5)

addl3 r2,r4,#1 
cmpl (r3)[r4],(r3)[r2]
bleq exit2

Pass parameters
and call

move $4, $18
move $5, $17
jal swap

pushl (r5)
pushl  r4
calls #2,swap

Inner loop addi $17, $17, –1
j for2tst

decl r4
brb for2tst

Outer loop exit2: addi $19, $19, 1
j for1tst

exit2: incl r6
brb for1tst

Restoring registers

exit1: lw $15, 0($29)
lw $16, 4($29)
lw $17, 8($29)
lw $18,12($29)
lw $19,16($29)
lw $20,20($29)
lw $24,24($29)
lw $25,28($29)
lw $31,32($29)
addi $29,$29, 36

Procedure return

jr $31 exit1: ret

Figure J.63 MIPS32 versus VAX assembly version of procedure sort in Figure J.62 on page J-76.



J.4 The VAX Architecture � J-81

Fallacy It is possible to design a flawless architecture.

All architecture design involves trade-offs made in the context of a set of hard-
ware and software technologies. Over time those technologies are likely to
change, and decisions that may have been correct at one time later look like mis-
takes. For example, in 1975 the VAX designers overemphasized the importance
of code size efficiency and underestimated how important ease of decoding and
pipelining would be 10 years later. And almost all architectures eventually suc-
cumb to the lack of sufficient address space. Avoiding these problems in the long
run, however, would probably mean compromising the efficiency of the architec-
ture in the short run.  

Fallacy An architecture with flaws cannot be successful.

The IBM 360 is often criticized in the literature—the branches are not PC-
relative, and the address is too small in displacement addressing. Yet, the machine
has been an enormous success because it correctly handled several new prob-
lems. First, the architecture has a large amount of address space. Second, it is
byte addressed and handles bytes well. Third, it is a general-purpose register
machine. Finally, it is simple enough to be efficiently implemented across a wide
performance and cost range. 

The Intel 8086 provides an even more dramatic example. The 8086 architec-
ture is the only widespread architecture in existence today that is not truly a
general-purpose register machine. Furthermore, the segmented address space of
the 8086 causes major problems for both programmers and compiler writers.
Nevertheless, the 8086 architecture—because of its selection as the microproces-
sor in the IBM PC—has been enormously successful.

Fallacy The architecture that executes fewer instructions is faster. 

Designers of VAX machines performed a quantitative comparison of VAX and
MIPS for implementations with comparable organizations, the VAX 8700 and the
MIPS M2000. Figure J.64 shows the ratio of the number of instructions executed
and the ratio of performance measured in clock cycles. MIPS executes about
twice as many instructions as the VAX while the MIPS M2000 has almost three
times the performance of the VAX 8700.

Concluding Remarks

The Virtual Address eXtension of the PDP-11 architecture . . .  provides a virtual
address of about 4.3 gigabytes which, even given the rapid improvement of mem-
ory technology, should be adequate far into the future.

William Strecker
“VAX-11/780—A Virtual Address Extension to the PDP-11
Family,” AFIPS Proc., National Computer Conference, 1978



J-82 � Appendix J  Survey of Instruction Set Architectures

We have seen that instruction sets can vary quite dramatically, both in how they
access operands and in the operations that can be performed by a single instruc-
tion. Figure J.65 compares instruction usage for both architectures for two pro-
grams; even very different architectures behave similarly in their use of
instruction classes. 

A product of its time, the VAX emphasis on code density and complex opera-
tions and addressing modes conflicts with the current emphasis on easy decoding,
simple operations and addressing modes, and pipelined performance.

Figure J.64 Ratio of MIPS M2000 to VAX 8700 in instructions executed and performance in clock cycles using
SPEC89 programs. On average, MIPS executes a little over twice as many instructions as the VAX, but the CPI for the
VAX is almost six times the MIPS CPI, yielding almost a threefold performance advantage. (Based on data from “Per-
formance from Architecture: Comparing a RISC and CISC with Similar Hardware Organization,” by D. Bhandarkar and
D. Clark in Proc. Symp. Architectural Support for Programming Languages and Operating Systems IV, 1991.)

Program Machine Branch
Arithmetic/

 logical
Data 

transfer
Floating

point Totals

gcc VAX 30% 40% 19% 89%

MIPS 24% 35% 27% 86%

spice VAX 18% 23% 15% 23% 79%

MIPS 04% 29% 35% 15% 83%

Figure J.65 The frequency of instruction distribution for two programs on VAX and
MIPS.

3

3.5

4

2.5

2

1.5

1

0.5

0
spice matrix nasa7 fpppp

Instructions executed Performance

tomcatv doduc espresso eqntott li

MIPS/VAX

Number of bits of displacement



J.5 The IBM 360/370 Architecture for Mainframe Computers � J-83

With more than 600,000 sold, the VAX architecture has had a very successful
run. In 1991 DEC made the transition from VAX to Alpha.

Orthogonality is key to the VAX architecture; the opcode is independent of
the addressing modes, which are independent of the data types and even the num-
ber of unique operands. Thus a few hundred operations expand to hundreds of
thousands of instructions when accounting for the data types, operand counts,
and addressing modes.

Exercises

J.1 [3] <J.4> The following VAX instruction decrements the location pointed to be
register r5:

decl (r5) 

What is the single MIPS instruction, or if it cannot be represented in a single
instruction, the shortest sequence of MIPS instructions, that performs the same
operation? What are the lengths of the instructions on each machine?

J.2 [5] <J.4> This exercise is the same as Exercise J.1, except this VAX instruction
clears a location using autoincrement deferred addressing:

clrl @(r5)+ 

J.3 [5] <J.4> This exercise is the same as Exercise J.1, except this VAX instruction
adds 1 to register r5, placing the sum back in register r5, compares the sum to
register r6, and then branches to L1 if r5 < r6:

aoblss r6, r5,L1 # r5 = r5 + 1; if (r5 < r6) goto L1.

J.4 [5] <J.4> Show the single VAX instruction, or minimal sequence of instructions,
for this C statement:

a = b + 100;

Assume a corresponds to register r3 and b corresponds to register r4.

J.5 [10] <J.4>  Show the single VAX instruction, or minimal sequence of instruc-
tions, for this C statement:

x[i + 1] = x[i] + c;

Assume c corresponds to register r3, i to register r4, and x is an array of 32-bit
words beginning at memory location 4,000,000ten.

Introduction

The term “computer architecture” was coined by IBM in 1964 for use with the
IBM 360. Amdahl, Blaauw, and Brooks [1964] used the term to refer to the

J.5 The IBM 360/370 Architecture for Mainframe 
Computers



J-84 � Appendix J  Survey of Instruction Set Architectures

programmer-visible portion of the instruction set. They believed that a family of
machines of the same architecture should be able to run the same software.
Although this idea may seem obvious to us today, it was quite novel at the time.
IBM, even though it was the leading company in the industry, had five different
architectures before the 360. Thus, the notion of a company standardizing on a
single architecture was a radical one. The 360 designers hoped that six different
divisions of IBM could be brought together by defining a common architecture.
Their definition of architecture was

. . . the structure of a computer that a machine language programmer must
understand to write a correct (timing independent) program for that machine.

The term “machine language programmer” meant that compatibility would hold,
even in assembly language, while “timing independent” allowed different imple-
mentations.

The IBM 360 was introduced in 1964 with six models and a 25:1 perfor-
mance ratio. Amdahl, Blaauw, and Brooks [1964] discuss the architecture of the
IBM 360 and the concept of permitting multiple object-code–compatible imple-
mentations. The notion of an instruction set architecture as we understand it
today was the most important aspect of the 360. The architecture also introduced
several important innovations, now in wide use:

1. 32-bit architecture

2. Byte-addressable memory with 8-bit bytes

3. 8-, 16-, 32-, and 64-bit data sizes

4. 32-bit single precision and 64-bit double precision floating-point data

In 1971, IBM shipped the first System/370 (models 155 and 165), which
included a number of significant extensions of the 360, as discussed by Case and
Padegs [1978], who also discuss the early history of System/360. The most
important addition was virtual memory, though virtual memory 370s did not ship
until 1972 when a virtual memory operating system was ready. By 1978, the
high-end 370 was several hundred times faster than the low-end 360s shipped 10
years earlier. In 1984, the 24-bit addressing model built into the IBM 360 needed
to be abandoned, and the 370-XA (eXtended Architecture) was introduced.
While old 24-bit programs could be supported without change, several instruc-
tions could not function in the same manner when extended to a 32-bit addressing
model (31-bit addresses supported) because they would not produce 31-bit
addresses. Converting the operating system, which was written mostly in assem-
bly language, was no doubt the biggest task.

Several studies of the IBM 360 and instruction measurement have been made.
Shustek’s thesis [1978] is the best known and most complete study of the 360/
370 architecture. He made several observations about instruction set complexity
that were not fully appreciated until some years later. Another important study of
the 360 is the Toronto study by Alexander and Wortman [1975] done on an IBM
360 using 19 XPL programs.



J.5 The IBM 360/370 Architecture for Mainframe Computers � J-85

System/360 Instruction Set

The 360 instruction set is shown in the following tables, organized by instruction
type and format. System/370 contains 15 additional user instructions.

Integer/Logical and Floating-Point R-R Instructions

The * indicates the instruction is floating point, and may be either D (double pre-
cision) or E (single precision).

Instruction Description

ALR Add logical register

AR Add register

A*R FP addition

CLR Compare logical register

CR Compare register

C*R FP compare

DR Divide register

D*R FP divide

H*R FP halve

LCR Load complement register

LC*R Load complement

LNR Load negative register

LN*R Load negative

LPR Load positive register

LP*R Load positive

LR Load register

L*R Load FP register

LTR Load and test register

LT*R Load and test FP register

MR Multiply register

M*R FP multiply

NR And register

OR Or register

SLR Subtract logical register

SR Subtract register

S*R FP subtraction

XR Exclusive or register



J-86 � Appendix J  Survey of Instruction Set Architectures

Branches and Status Setting R-R Instructions

These are R-R format instructions that either branch or set some system status;
several of them are privileged and legal only in supervisor mode.

Branches/Logical and Floating-Point Instructions—RX Format

These are all RX format instructions. The symbol “+” means either a word oper-
ation (and then stands for nothing) or H (meaning half word); for example, A+
stands for the two opcodes A and AH. The symbol “*” is D or E standing for
double- or single-precision floating point.

Instruction Description

BALR Branch and link

BCTR Branch on count

BCR Branch/condition

ISK Insert key

SPM Set program mask

SSK Set storage key

SVC Supervisor call

Instruction Description

A+ Add

A* FP add

AL Add logical

C+ Compare

C* FP compare

CL Compare logical

D Divide

D* FP divide

L+ Load

L* Load FP register

M+ Multiply

M* FP multiply

N And

O Or

S+ Subtract

S* FP subtract

SL Subtract logical

ST+ Store

ST* Store FP register

X Exclusive or



J.5 The IBM 360/370 Architecture for Mainframe Computers � J-87

Branches and Special Loads and Stores—RX format

RS and SI Format Instructions

These are the RS and SI format instructions. The symbol “*” may be A (arith-
metic) or L (logical).

Instruction Description

BAL Branch and link

BC Branch condition

BCT Branch on count

CVB Convert-binary

CVD Convert-decimal

EX Execute

IC Insert character

LA Load address

STC Store character

Instruction Description

BXH Branch/high

BXLE Branch/low-equal

CLI Compare logical immediate

HIO Halt I/O

LPSW Load PSW

LM Load multiple

MVI Move immediate

NI And immediate

OI Or immediate

RDD Read direct

SIO Start I/O

SL* Shift left A/L

SLD* Shift left double A/L

SR* Shift right A/L

SRD* Shift right double A/L

SSM Set system mask

STM Store multiple

TCH Test channel

TIO Test I/O

TM Test under mask

TS Test-and-set

WRD Write direct

XI Exclusive or immediate



J-88 � Appendix J  Survey of Instruction Set Architectures

SS Format Instructions

These are add decimal or string instructions.

360 Detailed Measurements

Figure J.66 shows the frequency of instruction usage for four IBM 360 programs.

Instruction Description

AP Add packed

CLC Compare logical chars

CP Compare packed

DP Divide packed

ED Edit

EDMK Edit and mark

MP Multiply packed

MVC Move character

MVN Move numeric

MVO Move with offset

MVZ Move zone

NC And characters

OC Or characters

PACK Pack (Character → decimal)

SP Subtract packed

TR Translate

TRT Translate and test

UNPK Unpack

XC Exclusive or characters

ZAP Zero and add packed



J.5 The IBM 360/370 Architecture for Mainframe Computers � J-89

Instruction PLIC FORTGO PLIGO COBOLGO Average

Control 32% 13% 5% 16% 16%

BC, BCR 28% 13% 5% 14% 15%

BAL, BALR 3% 2% 1%

Arithmetic/logical 29% 35% 29% 9% 26%

A, AR 3% 17% 21% 10%

SR 3% 7% 3%

SLL 6% 3% 2%

LA 8% 1% 1% 2%

CLI 7% 2%

NI 7% 2%

C 5% 4% 4% 0% 3%

TM 3% 1% 3% 2%

MH 2% 1%

Data transfer 17% 40% 56% 20% 33%

L, LR 7% 23% 28% 19% 19%

MVI 2% 16% 1% 5%

ST 3% 7% 3%

LD 7% 2% 2%

STD 7% 2% 2%

LPDR 3% 1%

LH 3% 1%

IC 2% 1%

LTR 1% 0%

Floating point 7% 2%

AD 3% 1%

MDR 3% 1%

Decimal, string 4% 40% 11%

MVC 4% 7% 3%

AP 11% 3%

ZAP 9% 2%

CVD 5% 1%

MP 3% 1%

CLC 3% 1%

CP 2% 1%

ED 1% 0%

Total 82% 95% 90% 85% 88%

Figure J.66 Distribution of instruction execution frequencies for the four 360 programs. All instructions with a
frequency of execution greater than 1.5% are included. Immediate instructions, which operate on only a single byte,
are included in the section that characterized their operation, rather than with the long character-string versions of
the same operation. By comparison, the average frequencies for the major instruction classes of the VAX are 23%
(control), 28% (arithmetic), 29% (data transfer), 7% (floating point), and 9% (decimal). Once again, a 1% entry in the
average column can occur because of entries in the constituent columns. These programs are a compiler for the pro-
gramming language PL-I and run time systems for the programming languages FORTRAN, PL/I, and Cobol.



J-90 � Appendix J  Survey of Instruction Set Architectures

Section K.3 (available on the companion CD) features a discussion on the evolu-
tion of instruction sets and includes references for further reading and exploration
of related topics.

J.6 Historical Perspective and References


