

H.1

Introduction H-2

H.2

Interprocessor Communication: The Critical Performance Issue H-3

H.3

Characteristics of Scientific Applications H-6

H.4

Synchronization: Scaling Up H-12

H.5

Performance of Scientific Applications on Shared-Memory
Multiprocessors H-21

H.6

Performance Measurement of Parallel Processors with Scientific
Applications H-33

H.7

Implementing Cache Coherence H-34

H.8

The Custom Cluster Approach: Blue Gene/L H-41

H.9

Concluding Remarks H-44

H

Large-Scale Multiprocessors

and Scientific Applications

“Hennessy and Patterson should move MPPs to Chapter 11.”

Jim Gray, Microsoft Research,

when asked about the coverage of massively parallel pro-
cessors (MPPs) for the third edition in 2000

Unfortunately for companies in the MPP business,
the third edition had only ten chapters and the

MPP business did not grow as anticipated when
the first and second edition were written.

H-2

�

Appendix H

Large-Scale Multiprocessors and Scientific Applications

The primary application of large-scale multiprocessors is for true parallel pro-
gramming, as opposed to multiprogramming or transaction-oriented computing
where independent tasks are executed in parallel without much interaction. In
true parallel computing, a set of tasks execute in a collaborative fashion on one
application. The primary target of parallel computing is scientific and technical
applications. In contrast, for loosely coupled commercial applications, such as
Web servers and most transaction-processing applications, there is little commu-
nication among tasks. For such applications, loosely coupled clusters are gener-
ally adequate and most cost-effective, since intertask communication is rare.

Because true parallel computing involves cooperating tasks, the nature of
communication between those tasks and how such communication is supported
in the hardware is of vital importance in determining the performance of the
application. The next section of this appendix examines such issues and the char-
acteristics of different communication models.

In comparison to sequential programs, whose performance is largely dictated
by the cache behavior and issues related to instruction-level parallelism, parallel
programs have several additional characteristics that are important to perfor-
mance, including the amount of parallelism, the size of parallel tasks, the fre-
quency and nature of intertask communication, and the frequency and nature of
synchronization. These aspects are affected both by the underlying nature of the
application as well as by the programming style. Section H.3 reviews the impor-
tant characteristics of several scientific applications to give a flavor of these
issues.

As we saw in Chapter 4, synchronization can be quite important in achieving
good performance. The larger number of parallel tasks that may need to synchro-
nize makes contention involving synchronization a much more serious problem
in large-scale multiprocessors. Section H.4 examines methods of scaling up the
synchronization mechanisms of Chapter 4.

Section H.5 explores the detailed performance of shared-memory parallel
applications executing on a moderate-scale shared-memory multiprocessor. As
we will see, the behavior and performance characteristics are quite a bit more
complicated than those in small-scale shared-memory multiprocessors. Section
H.6 discusses the general issue of how to examine parallel performance for dif-
ferent sized multiprocessors. Section H.7 explores the implementation challenges
of distributed shared-memory cache coherence, the key architectural approach
used in moderate-scale multiprocessors. Sections H.7 and H.8 rely on a basic
understanding of interconnection networks, and the reader should at least quickly
review Appendix E before reading these sections.

Section H.8 explores the design of one of the newest and most exciting large-
scale multiprocessors in recent times, Blue Gene. Blue Gene is a cluster-based
multiprocessor, but it uses a custom, highly dense node designed specifically for
this function, as opposed to the nodes of most earlier cluster multiprocessors that
used a node architecture similar to those in a desktop or smaller-scale multipro-

H.1 Introduction

H.2 Interprocessor Communication: The Critical Performance Issue

�

H-3

cessor node. By using a custom node design, Blue Gene achieves a significant
reduction in the cost, physical size, and power consumption of a node. Blue
Gene/L, a 64K-node version, is the world’s fastest computer in 2006, as mea-
sured by the linear algebra benchmark, Linpack.

In multiprocessors with larger processor counts, interprocessor communication
becomes more expensive, since the distance between processors increases. Fur-
thermore, in truly parallel applications where the threads of the application must
communicate, there is usually more communication than in a loosely coupled set
of distinct processes or independent transactions, which characterize many com-
mercial server applications. These factors combine to make efficient interproces-
sor communication one of the most important determinants of parallel
performance, especially for the scientific market.

Unfortunately, characterizing the communication needs of an application and
the capabilities of an architecture are both complex. This section examines the
key hardware characteristics that determine communication performance, while
the next section looks at application behavior and communication needs.

Three performance metrics are critical in any hardware communication
mechanism:

1.

Communication bandwidth

—Ideally the communication bandwidth is lim-
ited by processor, memory, and interconnection bandwidths, rather than by
some aspect of the communication mechanism. The interconnection network
determines the maximum communication capacity of the system. The band-
width in or out of a single node, which is often as important as total system
bandwidth, is affected both by the architecture within the node and by the
communication mechanism. How does the communication mechanism affect
the communication bandwidth of a node? When communication occurs,
resources within the nodes involved in the communication are tied up or
occupied, preventing other outgoing or incoming communication. When this

occupancy

 is incurred for each word of a message, it sets an absolute limit on
the communication bandwidth. This limit is often lower than what the net-
work or memory system can provide. Occupancy may also have a component
that is incurred for each communication event, such as an incoming or outgo-
ing request. In the latter case, the occupancy limits the communication rate,
and the impact of the occupancy on overall communication bandwidth
depends on the size of the messages.

2.

Communication latency

—Ideally the latency is as low as possible. As Appen-
dix E explains:

Communication latency = Sender overhead + Time of flight
+ Transmission time + Receiver overhead

H.2 Interprocessor Communication: The Critical
Performance Issue

H-4

�

Appendix H

Large-Scale Multiprocessors and Scientific Applications

assuming no contention. Time of flight is fixed and transmission time is deter-
mined by the interconnection network. The software and hardware overheads
in sending and receiving messages are largely determined by the communi-
cation mechanism and its implementation. Why is latency crucial? Latency
affects both performance and how easy it is to program a multiprocessor.
Unless latency is hidden, it directly affects performance either by tying up
processor resources or by causing the processor to wait.

Overhead and occupancy are closely related, since many forms of overhead
also tie up some part of the node, incurring an occupancy cost, which in turn
limits bandwidth. Key features of a communication mechanism may
directly affect overhead and occupancy. For example, how is the destination
address for a remote communication named, and how is protection imple-
mented? When naming and protection mechanisms are provided by the pro-
cessor, as in a shared address space, the additional overhead is small.
Alternatively, if these mechanisms must be provided by the operating sys-
tem for each communication, this increases the overhead and occupancy
costs of communication, which in turn reduce bandwidth and increase
latency.

3.

Communication latency hiding—

How well can the communication mecha-
nism hide latency by overlapping communication with computation or with
other communication? Although measuring this is not as simple as measuring
the first two metrics, it is an important characteristic that can be quantified by
measuring the running time on multiprocessors with the same communica-
tion latency but different support for latency hiding. Although hiding latency
is certainly a good idea, it poses an additional burden on the software system
and ultimately on the programmer. Furthermore, the amount of latency that
can be hidden is application dependent. Thus, it is usually best to reduce
latency wherever possible.

Each of these performance measures is affected by the characteristics of the
communications needed in the application, as we will see in the next section. The
size of the data items being communicated is the most obvious characteristic,
since it affects both latency and bandwidth directly, as well as affecting the effi-
cacy of different latency-hiding approaches. Similarly, the regularity in the com-
munication patterns affects the cost of naming and protection, and hence the
communication overhead. In general, mechanisms that perform well with smaller
as well as larger data communication requests, and irregular as well as regular
communication patterns, are more flexible and efficient for a wider class of appli-
cations. Of course, in considering any communication mechanism, designers
must consider cost as well as performance.

Advantages of Different Communication Mechanisms

The two primary means of communicating data in a large-scale multiprocessor
are message passing and shared memory. Each of these two primary communica-

H.2 Interprocessor Communication: The Critical Performance Issue

�

H-5

tion mechanisms has its advantages. For shared-memory communication, the
advantages include

�

Compatibility with the well-understood mechanisms in use in centralized
multiprocessors, which all use shared-memory communication. The OpenMP
consortium (see

www.openmp.org

 for description) has proposed a standard-
ized programming interface for shared-memory multiprocessors. Although
message passing also uses a standard, MPI or Message Passing Interface, this
standard is not used either in shared-memory multiprocessors or in loosely
coupled clusters in use in throughput-oriented environments.

�

Ease of programming when the communication patterns among processors
are complex or vary dynamically during execution. Similar advantages sim-
plify compiler design.

�

The ability to develop applications using the familiar shared-memory model,
focusing attention only on those accesses that are performance critical.

�

Lower overhead for communication and better use of bandwidth when com-
municating small items. This arises from the implicit nature of communica-
tion and the use of memory mapping to implement protection in hardware,
rather than through the I/O system.

�

The ability to use hardware-controlled caching to reduce the frequency of
remote communication by supporting automatic caching of all data, both
shared and private. As we will see, caching reduces both latency and conten-
tion for accessing shared data. This advantage also comes with a disadvan-
tage, which we mention below.

The major advantages for message-passing communication include the following:

�

The hardware can be simpler, especially by comparison with a scalable shared-
memory implementation that supports coherent caching of remote data.

�

Communication is explicit, which means it is simpler to understand. In
shared-memory models, it can be difficult to know when communication is
occurring and when it is not, as well as how costly the communication is.

�

Explicit communication focuses programmer attention on this costly aspect
of parallel computation, sometimes leading to improved structure in a multi-
processor program.

�

Synchronization is naturally associated with sending messages, reducing the
possibility for errors introduced by incorrect synchronization.

�

It makes it easier to use sender-initiated communication, which may have
some advantages in performance.

�

If the communication is less frequent and more structured, it is easier to
improve fault tolerance, by using a transaction-like structure. Furthermore,

H-6

�

Appendix H

Large-Scale Multiprocessors and Scientific Applications

the less tight coupling of nodes and explicit communication make fault isola-
tion simpler.

�

The very largest multiprocessors use a cluster structure, which is inherently
based on message passing. Using two different communication models may
introduce more complexity than is warranted.

Of course, the desired communication model can be created in software on
top of a hardware model that supports either of these mechanisms. Supporting
message passing on top of shared memory is considerably easier: Because mes-
sages essentially send data from one memory to another, sending a message can
be implemented by doing a copy from one portion of the address space to
another. The major difficulties arise from dealing with messages that may be mis-
aligned and of arbitrary length in a memory system that is normally oriented
toward transferring aligned blocks of data organized as cache blocks. These diffi-
culties can be overcome either with small performance penalties in software or
with essentially no penalties, using a small amount of hardware support.

Supporting shared memory efficiently on top of hardware for message pass-
ing is much more difficult. Without explicit hardware support for shared memory,
all shared-memory references need to involve the operating system to provide
address translation and memory protection, as well as to translate memory refer-
ences into message sends and receives. Loads and stores usually move small
amounts of data, so the high overhead of handling these communications in soft-
ware severely limits the range of applications for which the performance of
software-based shared memory is acceptable. For these reasons, it has never been
practical to use message passing to implement shared memory for a commercial
system.

The primary use of scalable shared-memory multiprocessors is for true parallel
programming, as opposed to multiprogramming or transaction-oriented comput-
ing. The primary target of parallel computing is scientific and technical applica-
tions. Thus, understanding the design issues requires some insight into the
behavior of such applications. This section provides such an introduction.

Characteristics of Scientific Applications

Our scientific/technical parallel workload consists of two applications and two
computational kernels. The kernels are an FFT (fast Fourier transformation) and
an LU decomposition, which were chosen because they represent commonly
used techniques in a wide variety of applications and have performance charac-
teristics typical of many parallel scientific applications. In addition, the kernels
have small code segments whose behavior we can understand and directly track
to specific architectural characteristics. Like many scientific applications, I/O is
essentially nonexistent in this workload.

H.3 Characteristics of Scientific Applications

H.3 Characteristics of Scientific Applications

�

H-7

The two applications that we use in this appendix are Barnes and Ocean,
which represent two important but very different types of parallel computation.
We briefly describe each of these applications and kernels and characterize their
basic behavior in terms of parallelism and communication. We describe how the
problem is decomposed for a distributed shared-memory multiprocessor; certain
data decompositions that we describe are not necessary on multiprocessors that
have a single, centralized memory.

The FFT Kernel

The FFT is the key kernel in applications that use spectral methods, which arise
in fields ranging from signal processing to fluid flow to climate modeling. The
FFT application we study here is a one-dimensional version of a parallel algo-
rithm for a complex number FFT. It has a sequential execution time for

n

 data
points of

n

 log

n

. The algorithm uses a high radix (equal to) that minimizes
communication. The measurements shown in this appendix are collected for a
million-point input data set.

There are three primary data structures: the input and output arrays of the
data being transformed and the roots of unity matrix, which is precomputed and
only read during the execution. All arrays are organized as square matrices. The
six steps in the algorithm are as follows:

1.

Transpose data matrix.

2.

Perform 1D FFT on each row of data matrix.

3.

Multiply the roots of unity matrix by the data matrix and write the result in
the data matrix.

4.

Transpose data matrix.

5.

Perform 1D FFT on each row of data matrix.

6.

Transpose data matrix.

The data matrices and the roots of unity matrix are partitioned among proces-
sors in contiguous chunks of rows, so that each processor’s partition falls in its
own local memory. The first row of the roots of unity matrix is accessed heavily
by all processors and is often replicated, as we do, during the first step of the
algorithm just shown. The data transposes ensure good locality during the indi-
vidual FFT steps, which would otherwise access nonlocal data.

The only communication is in the transpose phases, which require all-to-all
communication of large amounts of data. Contiguous subcolumns in the rows
assigned to a processor are grouped into blocks, which are transposed and placed
into the proper location of the destination matrix. Every processor transposes one
block locally and sends one block to each of the other processors in the system.
Although there is no reuse of individual words in the transpose, with long cache
blocks it makes sense to block the transpose to take advantage of the spatial
locality afforded by long blocks in the source matrix.

n

H-8

�

Appendix H

Large-Scale Multiprocessors and Scientific Applications

The LU Kernel

LU is an LU factorization of a dense matrix and is representative of many dense
linear algebra computations, such as QR factorization, Cholesky factorization,
and eigenvalue methods. For a matrix of size

n

×

n

 the running time is

n

3

 and the
parallelism is proportional to

n

2

. Dense LU factorization can be performed effi-
ciently by blocking the algorithm, using the techniques in Chapter 5, which leads
to highly efficient cache behavior and low communication. After blocking the
algorithm, the dominant computation is a dense matrix multiply that occurs in the
innermost loop. The block size is chosen to be small enough to keep the cache
miss rate low, and large enough to reduce the time spent in the less parallel parts
of the computation. Relatively small block sizes (8

×

 8 or 16

×

 16) tend to satisfy
both criteria.

Two details are important for reducing interprocessor communication. First,
the blocks of the matrix are assigned to processors using a 2D tiling: the
(where each block is

B

×

B

) matrix of blocks is allocated by laying a grid of size

p

×

p

 over the matrix of blocks in a cookie-cutter fashion until all the blocks are
allocated to a processor. Second, the dense matrix multiplication is performed by
the processor that owns the

destination

 block. With this blocking and allocation
scheme, communication during the reduction is both regular and predictable. For
the measurements in this appendix, the input is a 512

×

 512 matrix and a block of
16

×

 16 is used.
A natural way to code the blocked LU factorization of a 2D matrix in a shared

address space is to use a 2D array to represent the matrix. Because blocks are
allocated in a tiled decomposition, and a block is not contiguous in the address
space in a 2D array, it is very difficult to allocate blocks in the local memories of
the processors that own them. The solution is to ensure that blocks assigned to a
processor are allocated locally and contiguously by using a 4D array (with the
first two dimensions specifying the block number in the 2D grid of blocks, and
the next two specifying the element in the block).

The Barnes Application

Barnes is an implementation of the Barnes-Hut

n

-body algorithm solving a
problem in galaxy evolution.

N-body algorithms

simulate the interaction among
a large number of bodies that have forces interacting among them. In this
instance the bodies represent collections of stars and the force is gravity. To
reduce the computational time required to model completely all the individual
interactions among the bodies, which grow as

 n

2

,

n

-body algorithms take advan-
tage of the fact that the forces drop off with distance. (Gravity, for example,
drops off as 1/

d

2

, where

d

 is the distance between the two bodies.) The Barnes-
Hut algorithm takes advantage of this property by treating a collection of bodies
that are “far away” from another body as a single point at the center of mass of
the collection and with mass equal to the collection. If the body is far enough
from any body in the collection, then the error introduced will be negligible. The

n
B
--- n

B
---×

H.3 Characteristics of Scientific Applications

�

H-9

collections are structured in a hierarchical fashion, which can be represented in a
tree. This algorithm yields an

 n

log

n

 running time with parallelism proportional
to

n

.
The Barnes-Hut algorithm uses an octree (each node has up to eight children)

to represent the eight cubes in a portion of space. Each node then represents the
collection of bodies in the subtree rooted at that node, which we call a

cell

.
Because the density of space varies and the leaves represent individual bodies,
the depth of the tree varies. The tree is traversed once per body to compute the net
force acting on that body. The force calculation algorithm for a body starts at the
root of the tree. For every node in the tree it visits, the algorithm determines if the
center of mass of the cell represented by the subtree rooted at the node is “far
enough away” from the body. If so, the entire subtree under that node is approxi-
mated by a single point at the center of mass of the cell, and the force this center
of mass exerts on the body is computed. On the other hand, if the center of mass
is not far enough away, the cell must be “opened” and each of its subtrees visited.
The distance between the body and the cell, together with the error tolerances,
determines which cells must be opened. This force calculation phase dominates
the execution time. This appendix takes measurements using 16K bodies; the cri-
terion for determining whether a cell needs to be opened is set to the middle of
the range typically used in practice.

Obtaining effective parallel performance on Barnes-Hut is challenging
because the distribution of bodies is nonuniform and changes over time, making
partitioning the work among the processors and maintenance of good locality of
reference difficult. We are helped by two properties: (1) the system evolves
slowly, and (2) because gravitational forces fall off quickly, with high probability,
each cell requires touching a small number of other cells, most of which were
used on the last time step. The tree can be partitioned by allocating each proces-
sor a subtree. Many of the accesses needed to compute the force on a body in the
subtree will be to other bodies in the subtree. Since the amount of work associ-
ated with a subtree varies (cells in dense portions of space will need to access
more cells), the size of the subtree allocated to a processor is based on some mea-
sure of the work it has to do (e.g., how many other cells does it need to visit),
rather than just on the number of nodes in the subtree. By partitioning the octree
representation, we can obtain good load balance and good locality of reference,
while keeping the partitioning cost low. Although this partitioning scheme results
in good locality of reference, the resulting data references tend to be for small
amounts of data and are unstructured. Thus this scheme requires an efficient
implementation of shared-memory communication.

The Ocean Application

Ocean simulates the influence of eddy and boundary currents on large-scale flow
in the ocean. It uses a restricted red-black Gauss-Seidel multigrid technique to
solve a set of elliptical partial differential equations.

Red-black Gauss-Seidel

 is
an iteration technique that colors the points in the grid so as to consistently

H-10

�

Appendix H

Large-Scale Multiprocessors and Scientific Applications

update each point based on previous values of the adjacent neighbors.

Multigrid
methods

 solve finite difference equations by iteration using hierarchical grids.
Each grid in the hierarchy has fewer points than the grid below and is an approx-
imation to the lower grid. A finer grid increases accuracy and thus the rate of con-
vergence, while requiring more execution time, since it has more data points.
Whether to move up or down in the hierarchy of grids used for the next iteration
is determined by the rate of change of the data values. The estimate of the error at
every time step is used to decide whether to stay at the same grid, move to a
coarser grid, or move to a finer grid. When the iteration converges at the finest
level, a solution has been reached. Each iteration has

n

2

work for an

n

×

n

 grid
and the same amount of parallelism.

The arrays representing each grid are dynamically allocated and sized to the
particular problem. The entire ocean basin is partitioned into square subgrids (as
close as possible) that are allocated in the portion of the address space corre-
sponding to the local memory of the individual processors, which are assigned
responsibility for the subgrid. For the measurements in this appendix we use an
input that has 130

×

 130 grid points. There are five steps in a time iteration. Since
data are exchanged between the steps, all the processors present synchronize at
the end of each step before proceeding to the next. Communication occurs when
the boundary points of a subgrid are accessed by the adjacent subgrid in nearest-
neighbor fashion.

Computation/Communication for the Parallel Programs

A key characteristic in determining the performance of parallel programs is the
ratio of computation to communication. If the ratio is high, it means the applica-
tion has lots of computation for each datum communicated. As we saw in Section
H.2, communication is the costly part of parallel computing; therefore, high
computation-to-communication ratios are very beneficial. In a parallel processing
environment, we are concerned with how the ratio of computation to communica-
tion changes as we increase either the number of processors, the size of the prob-
lem, or both. Knowing how the ratio changes as we increase the processor count
sheds light on how well the application can be sped up. Because we are often
interested in running larger problems, it is vital to understand how changing the
data set size affects this ratio.

To understand what happens quantitatively to the computation-to-communi-
cation ratio as we add processors, consider what happens separately to computa-
tion and to communication as we either add processors or increase problem size.
Figure H.1 shows that as we add processors, for these applications, the amount of
computation per processor falls proportionately and the amount of communica-
tion per processor falls more slowly. As we increase the problem size, the compu-
tation scales as the

O

() complexity of the algorithm dictates. Communication
scaling is more complex and depends on details of the algorithm; we describe the
basic phenomena for each application in the caption of Figure H.1.

H.3 Characteristics of Scientific Applications

�

H-11

The overall computation-to-communication ratio is computed from the indi-
vidual growth rate in computation and communication. In general, this ratio rises
slowly with an increase in data set size and decreases as we add processors. This
reminds us that performing a fixed-size problem with more processors leads to
increasing inefficiencies because the amount of communication among proces-
sors grows. It also tells us how quickly we must scale data set size as we add pro-
cessors, to keep the fraction of time in communication fixed. The following
example illustrates these trade-offs.

Example

Suppose we know that for a given multiprocessor the Ocean application spends
20% of its execution time waiting for communication when run on four proces-
sors. Assume that the cost of each communication event is independent of proces-
sor count, which is not true in general, since communication costs rise with
processor count. How much faster might we expect Ocean to run on a 32-proces-
sor machine with the same problem size? What fraction of the execution time is
spent on communication in this case? How much larger a problem should we run
if we want the fraction of time spent communicating to be the same?

Answer

The computation-to-communication ratio for Ocean is , so if the problem
size is the same, the communication frequency scales by . This means that
communication time increases by . We can use a variation on Amdahl’s Law,

Application Scaling of computation Scaling of communication
Scaling of computation-

to-communication

FFT

LU

Barnes approximately approximately

Ocean

Figure H.1 Scaling of computation, of communication, and of the ratio are critical factors in determining perfor-
mance on parallel multiprocessors. In this table p is the increased processor count and n is the increased data set
size. Scaling is on a per-processor basis. The computation scales up with n at the rate given by O() analysis and scales
down linearly as p is increased. Communication scaling is more complex. In FFT all data points must interact, so com-
munication increases with n and decreases with p. In LU and Ocean, communication is proportional to the boundary
of a block, so it scales with data set size at a rate proportional to the side of a square with n points, namely, ; for
the same reason communication in these two applications scales inversely to . Barnes has the most complex scal-
ing properties. Because of the fall-off of interaction between bodies, the basic number of interactions among bodies,
which require communication, scales as . An additional factor of log n is needed to maintain the relationships
among the bodies. As processor count is increased, communication scales inversely to .

n nlog
p--------------

n
p--- nlog

n
p---

n

p
------- n

p

n nlog
p--------------

n nlog()
p

----------------------- n

p

n
p---

n

p

n

p

n
p

n
p

n p⁄
p

8

H-12 � Appendix H Large-Scale Multiprocessors and Scientific Applications

recognizing that the computation is decreased but the communication time is
increased. If T4 is the total execution time for 4 processors, then the execution
time for 32 processors is

Hence the speedup is

and the fraction of time spent in communication goes from 20% to 0.57/0.67
= 85%.

For the fraction of the communication time to remain the same, we must keep
the computation-to-communication ratio the same, so the problem size must
scale at the same rate as the processor count. Notice that because we have
changed the problem size, we cannot fairly compare the speedup of the original
problem and the scaled problem. We will return to the critical issue of scaling
applications for multiprocessors in Section H.6.

In this section we focus first on synchronization performance problems in larger
multiprocessors and then on solutions for those problems.

Synchronization Performance Challenges

To understand why the simple spin lock scheme presented in Chapter 4 does not
scale well, imagine a large multiprocessor with all processors contending for the
same lock. The directory or bus acts as a point of serialization for all the proces-
sors, leading to lots of contention, as well as traffic. The following example
shows how bad things can be.

Example Suppose there are 10 processors on a bus that each try to lock a variable simulta-
neously. Assume that each bus transaction (read miss or write miss) is 100 clock
cycles long. You can ignore the time of the actual read or write of a lock held in
the cache, as well as the time the lock is held (they won’t matter much!). Deter-
mine the number of bus transactions required for all 10 processors to acquire the
lock, assuming they are all spinning when the lock is released at time 0. About
how long will it take to process the 10 requests? Assume that the bus is totally

T32 Compute time + Communication time=

0.8 T× 4

8
------------------- 0.2 T× 4() 8×+=

0.1 T× 4 0.57 T× 4+= 0.67 T× 4=

Speedup
T4

T32

T4

0.67 T× 4
---------------------- 1.49= = =

H.4 Synchronization: Scaling Up

H.4 Synchronization: Scaling Up � H-13

fair so that every pending request is serviced before a new request and that the
processors are equally fast.

Answer When i processes are contending for the lock, they perform the following
sequence of actions, each of which generates a bus transaction:

i load linked operations to access the lock

i store conditional operations to try to lock the lock

1 store (to release the lock)

Thus for i processes, there are a total of 2i + 1 bus transactions. Note that this
assumes that the critical section time is negligible, so that the lock is released
before any other processors whose store conditional failed attempt another load
linked.

Thus, for n processes, the total number of bus operations is:

For 10 processes there are 120 bus transactions requiring 12,000 clock cycles or
120 clock cycles per lock acquisition!

The difficulty in this example arises from contention for the lock and serial-
ization of lock access, as well as the latency of the bus access. (The fairness prop-
erty of the bus actually makes things worse, since it delays the processor that
claims the lock from releasing it; unfortunately, for any bus arbitration scheme
some worst-case scenario does exist.) The key advantages of spin locks—that
they have low overhead in terms of bus or network cycles and offer good perfor-
mance when locks are reused by the same processor—are both lost in this exam-
ple. We will consider alternative implementations in the next section, but before
we do that, let’s consider the use of spin locks to implement another common
high-level synchronization primitive.

Barrier Synchronization

One additional common synchronization operation in programs with parallel
loops is a barrier. A barrier forces all processes to wait until all the processes
reach the barrier and then releases all of the processes. A typical implementation
of a barrier can be done with two spin locks: one to protect a counter that tallies
the processes arriving at the barrier and one to hold the processes until the last
process arrives at the barrier. To implement a barrier we usually use the ability to
spin on a variable until it satisfies a test; we use the notation spin(condition) to
indicate this. Figure H.2 is a typical implementation, assuming that lock and
unlock provide basic spin locks and total is the number of processes that must
reach the barrier.

2i 1+()
i 1=

n

∑ n n 1+() n+ n
2

2n+= =

H-14 � Appendix H Large-Scale Multiprocessors and Scientific Applications

In practice, another complication makes barrier implementation slightly more
complex. Frequently a barrier is used within a loop, so that processes released
from the barrier would do some work and then reach the barrier again. Assume
that one of the processes never actually leaves the barrier (it stays at the spin
operation), which could happen if the OS scheduled another process, for exam-
ple. Now it is possible that one process races ahead and gets to the barrier again
before the last process has left. The “fast” process then traps the remaining
“slow” process in the barrier by resetting the flag release. Now all the processes
will wait infinitely at the next instance of this barrier because one process is
trapped at the last instance, and the number of processes can never reach the
value of total.

The important observation in this example is that the programmer did nothing
wrong. Instead, the implementer of the barrier made some assumptions about for-
ward progress that cannot be assumed. One obvious solution to this is to count
the processes as they exit the barrier (just as we did on entry) and not to allow any
process to reenter and reinitialize the barrier until all processes have left the prior
instance of this barrier. This extra step would significantly increase the latency of
the barrier and the contention, which as we will see shortly are already large. An
alternative solution is a sense-reversing barrier, which makes use of a private per-
process variable, local_sense, which is initialized to 1 for each process. Figure
H.3 shows the code for the sense-reversing barrier. This version of a barrier is
safely usable; as the next example shows, however, its performance can still be
quite poor.

lock (counterlock);/* ensure update atomic */
if (count==0) release=0;/* first=>reset release */
count = count + 1;/* count arrivals */
unlock(counterlock);/* release lock */
if (count==total) {/* all arrived */
 count=0;/* reset counter */
 release=1;/* release processes */
}
else {/* more to come */

 spin (release==1);/* wait for arrivals */
}

Figure H.2 Code for a simple barrier. The lock counterlock protects the counter so
that it can be atomically incremented. The variable count keeps the tally of how many
processes have reached the barrier. The variable release is used to hold the processes
until the last one reaches the barrier. The operation spin (release==1) causes a pro-
cess to wait until all processes reach the barrier.

H.4 Synchronization: Scaling Up � H-15

Example Suppose there are 10 processors on a bus that each try to execute a barrier simul-
taneously. Assume that each bus transaction is 100 clock cycles, as before. You
can ignore the time of the actual read or write of a lock held in the cache as the
time to execute other nonsynchronization operations in the barrier implementa-
tion. Determine the number of bus transactions required for all 10 processors to
reach the barrier, be released from the barrier, and exit the barrier. Assume that
the bus is totally fair, so that every pending request is serviced before a new
request and that the processors are equally fast. Don’t worry about counting the
processors out of the barrier. How long will the entire process take?

Answer We assume that load linked and store conditional are used to implement lock and
unlock. Figure H.4 shows the sequence of bus events for a processor to traverse
the barrier, assuming that the first process to grab the bus does not have the lock.
There is a slight difference for the last process to reach the barrier, as described in
the caption.

For the ith process, the number of bus transactions is 3i + 4. The last process
to reach the barrier requires one less. Thus, for n processes, the number of bus
transactions is

For 10 processes, this is 204 bus cycles or 20,400 clock cycles! Our barrier oper-
ation takes almost twice as long as the 10-processor lock-unlock sequence.

local_sense =! local_sense; /* toggle local_sense */
lock (counterlock);/* ensure update atomic */
count=count+1;/* count arrivals */
if (count==total) {/* all arrived */
 count=0;/* reset counter */
 release=local_sense;/* release processes */
}
unlock (counterlock);/* unlock */
spin (release==local_sense);/* wait for signal */
}

Figure H.3 Code for a sense-reversing barrier. The key to making the barrier reusable
is the use of an alternating pattern of values for the flag release, which controls the
exit from the barrier. If a process races ahead to the next instance of this barrier while
some other processes are still in the barrier, the fast process cannot trap the other pro-
cesses, since it does not reset the value of release as it did in Figure H.2.

3i 4+()
i 1=

n

∑ 
 
 

1– 3n
2

11n+
2

------------------------ 1–=

H-16 � Appendix H Large-Scale Multiprocessors and Scientific Applications

As we can see from these examples, synchronization performance can be a
real bottleneck when there is substantial contention among multiple processes.
When there is little contention and synchronization operations are infrequent, we
are primarily concerned about the latency of a synchronization primitive—that is,
how long it takes an individual process to complete a synchronization operation.
Our basic spin lock operation can do this in two bus cycles: one to initially read
the lock and one to write it. We could improve this to a single bus cycle by a vari-
ety of methods. For example, we could simply spin on the swap operation. If the
lock were almost always free, this could be better, but if the lock were not free, it
would lead to lots of bus traffic, since each attempt to lock the variable would
lead to a bus cycle. In practice, the latency of our spin lock is not quite as bad as
we have seen in this example, since the write miss for a data item present in the
cache is treated as an upgrade and will be cheaper than a true read miss.

The more serious problem in these examples is the serialization of each pro-
cess’s attempt to complete the synchronization. This serialization is a problem
when there is contention because it greatly increases the time to complete the
synchronization operation. For example, if the time to complete all 10 lock and
unlock operations depended only on the latency in the uncontended case, then it
would take 1000 rather than 15,000 cycles to complete the synchronization oper-
ations. The barrier situation is as bad, and in some ways worse, since it is highly
likely to incur contention. The use of a bus interconnect exacerbates these prob-
lems, but serialization could be just as serious in a directory-based multiproces-
sor, where the latency would be large. The next subsection presents some
solutions that are useful when either the contention is high or the processor count
is large.

Event

Number of
times for
process i Corresponding source line Comment

LL counterlock i lock (counterlock); All processes try for lock.

Store conditional i lock (counterlock); All processes try for lock.

LD count 1 count=count+1; Successful process.

Load linked i – 1 lock (counterlock); Unsuccessful process; try again.

SD count 1 count=count+1; Miss to get exclusive access.

SD counterlock 1 unlock(counterlock); Miss to get the lock.

LD release 2 spin (release==local_sense);/ Read release: misses initially and when
finally written.

Figure H.4 Here are the actions, which require a bus transaction, taken when the ith process reaches the barrier.
The last process to reach the barrier requires one less bus transaction, since its read of release for the spin will hit in
the cache!

H.4 Synchronization: Scaling Up � H-17

Synchronization Mechanisms for Larger-Scale Multiprocessors

What we would like are synchronization mechanisms that have low latency in
uncontended cases and that minimize serialization in the case where contention is
significant. We begin by showing how software implementations can improve the
performance of locks and barriers when contention is high; we then explore two
basic hardware primitives that reduce serialization while keeping latency low.

Software Implementations

The major difficulty with our spin lock implementation is the delay due to con-
tention when many processes are spinning on the lock. One solution is to artifi-
cially delay processes when they fail to acquire the lock. The best performance is
obtained by increasing the delay exponentially whenever the attempt to acquire
the lock fails. Figure H.5 shows how a spin lock with exponential back-off is
implemented. Exponential back-off is a common technique for reducing conten-
tion in shared resources, including access to shared networks and buses (see Sec-
tions E.4–E.8). This implementation still attempts to preserve low latency when
contention is small by not delaying the initial spin loop. The result is that if many
processes are waiting, the back-off does not affect the processes on their first
attempt to acquire the lock. We could also delay that process, but the result would

DADDUI R3,R0,#1 ;R3 = initial delay
lockit: LL R2,0(R1) ;load linked

BNEZ R2,lockit ;not available-spin
DADDUI R2,R2,#1 ;get locked value
SC R2,0(R1) ;store conditional
BNEZ R2,gotit ;branch if store succeeds
DSLL R3,R3,#1 ;increase delay by factor of 2
PAUSE R3 ;delays by value in R3
J lockit

gotit: use data protected by lock

Figure H.5 A spin lock with exponential back-off. When the store conditional fails, the
process delays itself by the value in R3. The delay can be implemented by decrementing
a copy of the value in R3 until it reaches 0. The exact timing of the delay is multiproces-
sor dependent, although it should start with a value that is approximately the time to
perform the critical section and release the lock. The statement pause R3 should cause a
delay of R3 of these time units. The value in R3 is increased by a factor of 2 every time
the store conditional fails, which causes the process to wait twice as long before trying
to acquire the lock again. The small variations in the rate at which competing proces-
sors execute instructions are usually sufficient to ensure that processes will not continu-
ally collide. If the natural perturbation in execution time was insufficient, R3 could be
initialized with a small random value, increasing the variance in the successive delays
and reducing the probability of successive collisions.

H-18 � Appendix H Large-Scale Multiprocessors and Scientific Applications

be poorer performance when the lock was in use by only two processes and the
first one happened to find it locked.

Another technique for implementing locks is to use queuing locks. Queuing
locks work by constructing a queue of waiting processors; whenever a processor
frees up the lock, it causes the next processor in the queue to attempt access. This
eliminates contention for a lock when it is freed. We show how queuing locks
operate in the next section using a hardware implementation, but software imple-
mentations using arrays can achieve most of the same benefits. Before we look at
hardware primitives, let’s look at a better mechanism for barriers.

Our barrier implementation suffers from contention both during the gather
stage, when we must atomically update the count, and at the release stage, when
all the processes must read the release flag. The former is more serious because it
requires exclusive access to the synchronization variable and thus creates much
more serialization; in comparison, the latter generates only read contention. We
can reduce the contention by using a combining tree, a structure where multiple
requests are locally combined in tree fashion. The same combining tree can be
used to implement the release process, reducing the contention there.

Our combining tree barrier uses a predetermined n-ary tree structure. We use
the variable k to stand for the fan-in; in practice k = 4 seems to work well. When
the kth process arrives at a node in the tree, we signal the next level in the tree.
When a process arrives at the root, we release all waiting processes. As in our
earlier example, we use a sense-reversing technique. A tree-based barrier, as
shown in Figure H.6, uses a tree to combine the processes and a single signal to
release the barrier. Some MPPs (e.g., the T3D and CM-5) have also included
hardware support for barriers, but more recent machines have relied on software
libraries for this support.

Hardware Primitives

In this subsection we look at two hardware synchronization primitives. The first
primitive deals with locks, while the second is useful for barriers and a number of
other user-level operations that require counting or supplying distinct indices. In
both cases we can create a hardware primitive where latency is essentially identi-
cal to our earlier version, but with much less serialization, leading to better scal-
ing when there is contention.

The major problem with our original lock implementation is that it introduces
a large amount of unneeded contention. For example, when the lock is released
all processors generate both a read and a write miss, although at most one proces-
sor can successfully get the lock in the unlocked state. This sequence happens on
each of the 10 lock/unlock sequences, as we saw in the example on page H-12.

We can improve this situation by explicitly handing the lock from one waiting
processor to the next. Rather than simply allowing all processors to compete
every time the lock is released, we keep a list of the waiting processors and hand
the lock to one explicitly, when its turn comes. This sort of mechanism has been
called a queuing lock. Queuing locks can be implemented either in hardware,

H.4 Synchronization: Scaling Up � H-19

which we describe here, or in software using an array to keep track of the waiting
processes. The basic concepts are the same in either case. Our hardware imple-
mentation assumes a directory-based multiprocessor where the individual proces-
sor caches are addressable. In a bus-based multiprocessor, a software
implementation would be more appropriate and would have each processor using
a different address for the lock, permitting the explicit transfer of the lock from
one process to another.

How does a queuing lock work? On the first miss to the lock variable, the
miss is sent to a synchronization controller, which may be integrated with the
memory controller (in a bus-based system) or with the directory controller. If the

struct node{/* a node in the combining tree */
 int counterlock; /* lock for this node */
 int count; /* counter for this node */
 int parent; /* parent in the tree = 0..P-1 except for root */
};
struct node tree [0..P–1]; /* the tree of nodes */
int local_sense; /* private per processor */
int release; /* global release flag */

/* function to implement barrier */
barrier (int mynode, int local_sense) {
 lock (tree[mynode].counterlock); /* protect count */
 tree[mynode].count=tree[mynode].count+1;
 /* increment count */
 if (tree[mynode].count==k) {/* all arrived at mynode */
 if (tree[mynode].parent >=0) {
 barrier(tree[mynode].parent);
 } else{
 release = local_sense;
 };
 tree[mynode].count = 0; /* reset for the next time */
 unlock (tree[mynode].counterlock); /* unlock */
 spin (release==local_sense); /* wait */
};
/* code executed by a processor to join barrier */
local_sense =! local_sense;
barrier (mynode);

Figure H.6 An implementation of a tree-based barrier reduces contention consider-
ably. The tree is assumed to be prebuilt statically using the nodes in the array tree. Each
node in the tree combines k processes and provides a separate counter and lock, so
that at most k processes contend at each node. When the kth process reaches a node in
the tree, it goes up to the parent, incrementing the count at the parent. When the count
in the parent node reaches k, the release flag is set. The count in each node is reset by
the last process to arrive. Sense-reversing is used to avoid races as in the simple barrier.
The value of tree[root].parent should be set to –1 when the tree is initially built.

H-20 � Appendix H Large-Scale Multiprocessors and Scientific Applications

lock is free, it is simply returned to the processor. If the lock is unavailable, the
controller creates a record of the node’s request (such as a bit in a vector) and
sends the processor back a locked value for the variable, which the processor then
spins on. When the lock is freed, the controller selects a processor to go ahead
from the list of waiting processors. It can then either update the lock variable in
the selected processor’s cache or invalidate the copy, causing the processor to
miss and fetch an available copy of the lock.

Example How many bus transactions and how long does it take to have 10 processors lock
and unlock the variable using a queuing lock that updates the lock on a miss?
Make the other assumptions about the system the same as those in the earlier
example on page H-12.

Answer For n processors, each will initially attempt a lock access, generating a bus trans-
action, one will succeed and free up the lock, for a total of n + 1 transactions for
the first processor. Each subsequent processor requires two bus transactions, one
to receive the lock and one to free it up. Thus, the total number of bus transac-
tions is (n + 1) + 2(n – 1) = 3n – 1. Note that the number of bus transactions is
now linear in the number of processors contending for the lock, rather than qua-
dratic, as it was with the spin lock we examined earlier. For 10 processors, this
requires 29 bus cycles or 2900 clock cycles.

There are a couple of key insights in implementing such a queuing lock capa-
bility. First, we need to be able to distinguish the initial access to the lock, so we
can perform the queuing operation, and also the lock release, so we can provide
the lock to another processor. The queue of waiting processes can be imple-
mented by a variety of mechanisms. In a directory-based multiprocessor, this
queue is akin to the sharing set, and similar hardware can be used to implement
the directory and queuing lock operations. One complication is that the hardware
must be prepared to reclaim such locks, since the process that requested the lock
may have been context-switched and may not even be scheduled again on the
same processor.

Queuing locks can be used to improve the performance of our barrier opera-
tion. Alternatively, we can introduce a primitive that reduces the amount of time
needed to increment the barrier count, thus reducing the serialization at this bot-
tleneck, which should yield comparable performance to using queuing locks.
One primitive that has been introduced for this and for building other synchroni-
zation operations is fetch-and-increment, which atomically fetches a variable and
increments its value. The returned value can be either the incremented value or
the fetched value. Using fetch-and-increment we can dramatically improve our
barrier implementation, compared to the simple code-sensing barrier.

Example Write the code for the barrier using fetch-and-increment. Making the same
assumptions as in our earlier example and also assuming that a fetch-and-
increment operation, which returns the incremented value, takes 100 clock

H.5 Performance of Scientific Applications on Shared-Memory Multiprocessors � H-21

cycles, determine the time for 10 processors to traverse the barrier. How many
bus cycles are required?

Answer Figure H.7 shows the code for the barrier. For n processors, this implementation
requires n fetch-and-increment operations, n cache misses to access the count,
and n cache misses for the release operation, for a total of 3n bus transactions.
For 10 processors, this is 30 bus transactions or 3000 clock cycles. Like the
queueing lock, the time is linear in the number of processors. Of course, fetch-
and-increment can also be used in implementing the combining tree barrier,
reducing the serialization at each node in the tree.

As we have seen, synchronization problems can become quite acute in larger-
scale multiprocessors. When the challenges posed by synchronization are com-
bined with the challenges posed by long memory latency and potential load
imbalance in computations, we can see why getting efficient usage of large-scale
parallel processors is very challenging.

This section covers the performance of the scientific applications from Section
H.3 on both symmetric shared-memory and distributed shared-memory multi-
processors.

Performance of a Scientific Workload on a Symmetric
Shared-Memory Multiprocessor

We evaluate the performance of our four scientific applications on a symmetric
shared-memory multiprocessor using the following problem sizes:

local_sense =! local_sense; /* toggle local_sense */
fetch_and_increment(count);/* atomic update */
if (count==total) {/* all arrived */
 count=0;/* reset counter */
 release=local_sense;/* release processes */
}
else {/* more to come */
 spin (release==local_sense);/* wait for signal */
}

Figure H.7 Code for a sense-reversing barrier using fetch-and-increment to do the
counting.

H.5 Performance of Scientific Applications on Shared-
Memory Multiprocessors

H-22 � Appendix H Large-Scale Multiprocessors and Scientific Applications

� Barnes-Hut—16K bodies run for six time steps (the accuracy control is set to
1.0, a typical, realistic value)

� FFT—1 million complex data points

� LU—A 512 × 512 matrix is used with 16 × 16 blocks

� Ocean—A 130 × 130 grid with a typical error tolerance

In looking at the miss rates as we vary processor count, cache size, and block
size, we decompose the total miss rate into coherence misses and normal unipro-
cessor misses. The normal uniprocessor misses consist of capacity, conflict, and
compulsory misses. We label these misses as capacity misses because that is the
dominant cause for these benchmarks. For these measurements, we include as a
coherence miss any write misses needed to upgrade a block from shared to exclu-
sive, even though no one is sharing the cache block. This measurement reflects a
protocol that does not distinguish between a private and shared cache block.

Figure H.8 shows the data miss rates for our four applications, as we increase
the number of processors from 1 to 16, while keeping the problem size constant.
As we increase the number of processors, the total amount of cache increases,
usually causing the capacity misses to drop. In contrast, increasing the processor
count usually causes the amount of communication to increase, in turn causing
the coherence misses to rise. The magnitude of these two effects differs by
application.

In FFT, the capacity miss rate drops (from nearly 7% to just over 5%) but the
coherence miss rate increases (from about 1% to about 2.7%), leading to a con-
stant overall miss rate. Ocean shows a combination of effects, including some
that relate to the partitioning of the grid and how grid boundaries map to cache
blocks. For a typical 2D grid code the communication-generated misses are pro-
portional to the boundary of each partition of the grid, while the capacity misses
are proportional to the area of the grid. Therefore, increasing the total amount of
cache while keeping the total problem size fixed will have a more significant
effect on the capacity miss rate, at least until each subgrid fits within an individ-
ual processor’s cache. The significant jump in miss rate between one and two
processors occurs because of conflicts that arise from the way in which the multi-
ple grids are mapped to the caches. This conflict is present for direct-mapped and
two-way set-associative caches, but fades at higher associativities. Such conflicts
are not unusual in array-based applications, especially when there are multiple
grids in use at once. In Barnes and LU the increase in processor count has little
effect on the miss rate, sometimes causing a slight increase and sometimes caus-
ing a slight decrease.

Increasing the cache size usually has a beneficial effect on performance, since
it reduces the frequency of costly cache misses. Figure H.9 illustrates the change
in miss rate as cache size is increased for 16 processors, showing the portion of
the miss rate due to coherence misses and to uniprocessor capacity misses. Two
effects can lead to a miss rate that does not decrease—at least not as quickly as
we might expect—as cache size increases: inherent communication and plateaus

H.5 Performance of Scientific Applications on Shared-Memory Multiprocessors � H-23

Figure H.8 Data miss rates can vary in nonobvious ways as the processor count is
increased from 1 to 16. The miss rates include both coherence and capacity miss
rates. The compulsory misses in these benchmarks are all very small and are included
in the capacity misses. Most of the misses in these applications are generated by
accesses to data that are potentially shared, although in the applications with larger
miss rates (FFT and Ocean), it is the capacity misses rather than the coherence misses
that comprise the majority of the miss rate. Data are potentially shared if they are
allocated in a portion of the address space used for shared data. In all except Ocean,
the potentially shared data are heavily shared, while in Ocean only the boundaries of
the subgrids are actually shared, although the entire grid is treated as a potentially
shared data object. Of course, since the boundaries change as we increase the pro-
cessor count (for a fixed-size problem), different amounts of the grid become shared.
The anomalous increase in capacity miss rate for Ocean in moving from 1 to 2 proces-
sors arises because of conflict misses in accessing the subgrids. In all cases except
Ocean, the fraction of the cache misses caused by coherence transactions rises when
a fixed-size problem is run on an increasing number of processors. In Ocean, the
coherence misses initially fall as we add processors due to a large number of misses
that are write ownership misses to data that are potentially, but not actually, shared.
As the subgrids begin to fit in the aggregate cache (around 16 processors), this effect
lessens. The single-processor numbers include write upgrade misses, which occur in
this protocol even if the data are not actually shared, since they are in the shared
state. For all these runs, the cache size is 64 KB, two-way set associative, with 32-byte
blocks. Notice that the scale on the y-axis for each benchmark is different, so that the
behavior of the individual benchmarks can be seen clearly.

Miss rate

0%

3%

2%

1%

1 2 4

Processor count

FFT

8 16

8%

4%

7%

6%

5%

Miss rate

0%

6%

4%

2%

1 2 4

Processor count

Ocean

8 16

16%
18%

20%

8%

14%

12%

10%

Miss rate

0%

1%

1 2 4

Processor count

LU

8 16

2%

Miss rate

0%
1 2 4

Processor count

Barnes

8 16

1%

Coherence miss rate Capacity miss rate

H-24 � Appendix H Large-Scale Multiprocessors and Scientific Applications

in the miss rate. Inherent communication leads to a certain frequency of coher-
ence misses that are not significantly affected by increasing cache size. Thus if
the cache size is increased while maintaining a fixed problem size, the coherence
miss rate eventually limits the decrease in cache miss rate. This effect is most
obvious in Barnes, where the coherence miss rate essentially becomes the entire
miss rate.

A less important effect is a temporary plateau in the capacity miss rate that
arises when the application has some fraction of its data present in cache but
some significant portion of the data set does not fit in the cache or in caches that
are slightly bigger. In LU, a very small cache (about 4 KB) can capture the pair of
16 × 16 blocks used in the inner loop; beyond that the next big improvement in
capacity miss rate occurs when both matrices fit in the caches, which occurs
when the total cache size is between 4 MB and 8 MB. This effect, sometimes
called a working set effect, is partly at work between 32 KB and 128 KB for FFT,
where the capacity miss rate drops only 0.3%. Beyond that cache size, a faster
decrease in the capacity miss rate is seen, as a major data structure begins to
reside in the cache. These plateaus are common in programs that deal with large
arrays in a structured fashion.

Figure H.9 The miss rate usually drops as the cache size is increased, although
coherence misses dampen the effect. The block size is 32 bytes and the cache is two-
way set associative. The processor count is fixed at 16 processors. Observe that the scale
for each graph is different.

Miss rate

0%

4%

2%

32 64 128

Cache size (KB)

FFT

256

10%

6%

8%

Miss rate

0%

1.5%

1.0%

32 64 128

Cache size (KB)

LU

256

2.5%

2.0%

Miss rate

0%

6%

2%

4%

32 64 128

Cache size (KB)

Ocean

256

14%

10%

8%

12%

Miss rate

0%

1.0%

32 64 128

Cache size (KB)

 Barnes

256

2.0%

1.5%

Coherence miss rate Capacity miss rate

H.5 Performance of Scientific Applications on Shared-Memory Multiprocessors � H-25

Increasing the block size is another way to change the miss rate in a cache. In
uniprocessors, larger block sizes are often optimal with larger caches. In multi-
processors, two new effects come into play: a reduction in spatial locality for
shared data and a potential increase in miss rate due to false sharing. Several
studies have shown that shared data have lower spatial locality than unshared
data. Poorer locality means that, for shared data, fetching larger blocks is less
effective than in a uniprocessor because the probability is higher that the block
will be replaced before all its contents are referenced. Likewise, increasing the
basic size also increases the potential frequency of false sharing, increasing the
miss rate.

Figure H.10 shows the miss rates as the cache block size is increased for a 16-
processor run with a 64 KB cache. The most interesting behavior is in Barnes,
where the miss rate initially declines and then rises due to an increase in the num-
ber of coherence misses, which probably occurs because of false sharing. In the
other benchmarks, increasing the block size decreases the overall miss rate. In
Ocean and LU, the block size increase affects both the coherence and capacity
miss rates about equally. In FFT, the coherence miss rate is actually decreased at
a faster rate than the capacity miss rate. This reduction occurs because the com-
munication in FFT is structured to be very efficient. In less optimized programs,

Figure H.10 The data miss rate drops as the cache block size is increased. All these
results are for a 16-processor run with a 64 KB cache and two-way set associativity.
Once again we use different scales for each benchmark.

Miss rate

0%

6%

4%

2%

16 32 64

Block size (bytes)

FFT

128

14%

10%

8%

12%

Miss rate

0%

2%

1%

16 32 64

Block size (bytes)

LU

128

4%

3%

Miss rate

0%

6%

2%

4%

16 32 64

Block size (bytes)

Ocean

128

14%

10%

8%

12%

Miss rate

0%
16 32 64

Block size (bytes)

Barnes

128

1%

Coherence miss rate Capacity miss rate

H-26 � Appendix H Large-Scale Multiprocessors and Scientific Applications

we would expect more false sharing and less spatial locality for shared data,
resulting in more behavior like that of Barnes.

Although the drop in miss rates with longer blocks may lead you to believe
that choosing a longer block size is the best decision, the bottleneck in bus-based
multiprocessors is often the limited memory and bus bandwidth. Larger blocks
mean more bytes on the bus per miss. Figure H.11 shows the growth in bus traffic
as the block size is increased. This growth is most serious in the programs that
have a high miss rate, especially Ocean. The growth in traffic can actually lead to
performance slowdowns due both to longer miss penalties and to increased bus
contention.

Performance of a Scientific Workload on a Distributed-
Memory Multiprocessor

The performance of a directory-based multiprocessor depends on many of the
same factors that influence the performance of bus-based multiprocessors (e.g.,
cache size, processor count, and block size), as well as the distribution of misses
to various locations in the memory hierarchy. The location of a requested data
item depends on both the initial allocation and the sharing patterns. We start by
examining the basic cache performance of our scientific/technical workload and
then look at the effect of different types of misses.

Figure H.11 Bus traffic for data misses climbs steadily as the block size in the data
cache is increased. The factor of 3 increase in traffic for Ocean is the best argument
against larger block sizes. Remember that our protocol treats ownership or upgrade
misses the same as other misses, slightly increasing the penalty for large cache blocks;
in both Ocean and FFT this simplification accounts for less than 10% of the traffic.

7.0

4.0

5.0

6.0

3.0

2.0

1.0

Bytes per data reference

0.0

Block size (bytes)

16 32 64 128

FFT
LU
Barnes
Ocean

H.5 Performance of Scientific Applications on Shared-Memory Multiprocessors � H-27

Because the multiprocessor is larger and has longer latencies than our
snooping-based multiprocessor, we begin with a slightly larger cache (128 KB)
and a larger block size of 64 bytes.

In distributed-memory architectures, the distribution of memory requests
between local and remote is key to performance because it affects both the con-
sumption of global bandwidth and the latency seen by requests. Therefore, for the
figures in this section we separate the cache misses into local and remote
requests. In looking at the figures, keep in mind that, for these applications, most
of the remote misses that arise are coherence misses, although some capacity
misses can also be remote, and in some applications with poor data distribution
such misses can be significant.

As Figure H.12 shows, the miss rates with these cache sizes are not affected
much by changes in processor count, with the exception of Ocean, where the
miss rate rises at 64 processors. This rise results from two factors: an increase in
mapping conflicts in the cache that occur when the grid becomes small, which
leads to a rise in local misses, and an increase in the number of the coherence
misses, which are all remote.

Figure H.13 shows how the miss rates change as the cache size is increased,
assuming a 64-processor execution and 64-byte blocks. These miss rates decrease
at rates that we might expect, although the dampening effect caused by little or
no reduction in coherence misses leads to a slower decrease in the remote misses
than in the local misses. By the time we reach the largest cache size shown, 512
KB, the remote miss rate is equal to or greater than the local miss rate. Larger
caches would amplify this trend.

We examine the effect of changing the block size in Figure H.14. Because
these applications have good spatial locality, increases in block size reduce the
miss rate, even for large blocks, although the performance benefits for going to
the largest blocks are small. Furthermore, most of the improvement in miss rate
comes from a reduction in the local misses.

Rather than plot the memory traffic, Figure H.15 plots the number of bytes
required per data reference versus block size, breaking the requirement into local
and global bandwidth. In the case of a bus, we can simply aggregate the demands
of each processor to find the total demand for bus and memory bandwidth. For a
scalable interconnect, we can use the data in Figure H.15 to compute the required
per-node global bandwidth and the estimated bisection bandwidth, as the next
example shows.

Example Assume a 64-processor multiprocessor with 1 GHz processors that sustain one
memory reference per processor clock. For a 64-byte block size, the remote miss
rate is 0.7%. Find the per-node and estimated bisection bandwidth for FFT.
Assume that the processor does not stall for remote memory requests; this might
be true if, for example, all remote data were prefetched. How do these bandwidth
requirements compare to various interconnection technologies?

H-28 � Appendix H Large-Scale Multiprocessors and Scientific Applications

FFT performs all-to-all communication, so the bisection bandwidth is equal
to the number of processors times the per-node bandwidth, or about 64 x 448
MB/sec = 28.7 GB/sec. The SGI Origin 3000 with 64 processors has a bisection
bandwidth of about 50 GB/sec. No standard networking technology comes close.

Answer The per-node bandwidth is simply the number of data bytes per reference times
the reference rate: 0.7% × 1 GB/sec × 64 = 448 MB/sec. This rate is somewhat
higher than the hardware sustainable transfer rate for the CrayT3E (using a block

Figure H.12 The data miss rate is often steady as processors are added for these
benchmarks. Because of its grid structure, Ocean has an initially decreasing miss rate,
which rises when there are 64 processors. For Ocean, the local miss rate drops from 5%
at 8 processors to 2% at 32, before rising to 4% at 64. The remote miss rate in Ocean,
driven primarily by communication, rises monotonically from 1% to 2.5%. Note that to
show the detailed behavior of each benchmark, different scales are used on the y-axis.
The cache for all these runs is 128 KB, two-way set associative, with 64-byte blocks.
Remote misses include any misses that require communication with another node,
whether to fetch the data or to deliver an invalidate. In particular, in this figure and
other data in this section, the measurement of remote misses includes write upgrade
misses where the data are up to date in the local memory but cached elsewhere and,
therefore, require invalidations to be sent. Such invalidations do indeed generate
remote traffic, but may or may not delay the write, depending on the consistency
model (see Section 4.6).

Miss rate

0%

3%

2%

1%

8 16 32

Processor count

FFT

64

6%

4%

5%

Miss rate

0.0%

0.5%

8 16 32

Processor count

LU

64

1.0%

Miss rate

0%

4%

2%

8 16 32

Processor count

Ocean

64

8%

6%

Miss rate

0.0%
8 16 32

Processor count

Barnes

64

0.5%

Local misses Remote misses

H.5 Performance of Scientific Applications on Shared-Memory Multiprocessors � H-29

prefetch) and lower than that for an SGI Origin 3000 (1.6 GB/processor pair).
The FFT per-node bandwidth demand exceeds the bandwidth sustainable from
the fastest standard networks by more than a factor of 5.

The previous example looked at the bandwidth demands. The other key issue
for a parallel program is remote memory access time, or latency. To get insight
into this, we use a simple example of a directory-based multiprocessor. Figure
H.16 shows the parameters we assume for our simple multiprocessor model. It
assumes that the time to first word for a local memory access is 85 processor
cycles and that the path to local memory is 16 bytes wide, while the network
interconnect is 4 bytes wide. This model ignores the effects of contention, which
are probably not too serious in the parallel benchmarks we examine, with the
possible exception of FFT, which uses all-to-all communication. Contention
could have a serious performance impact in other workloads.

Figure H.13 Miss rates decrease as cache sizes grow. Steady decreases are seen in
the local miss rate, while the remote miss rate declines to varying degrees, depending
on whether the remote miss rate had a large capacity component or was driven prima-
rily by communication misses. In all cases, the decrease in the local miss rate is larger
than the decrease in the remote miss rate. The plateau in the miss rate of FFT, which we
mentioned in the last section, ends once the cache exceeds 128 KB. These runs were
done with 64 processors and 64-byte cache blocks.

Miss rate

0%

4%

2%

32 64 128

Cache size (KB)

FFT

256 512

10%

6%

8%

Miss rate

0.0%

1.0%

0.5%

32 64 128

Cache size (KB)

LU

Ocean

256 512

2.5%

1.5%

2.0%

Miss rate

0.0%

0.5%

32 64 128

Cache size (KB)

Barnes

256 512

1.5%

1.0% Miss rate

0%

10%

5%

32 64 128

Cache size (KB)

256 512

20%

15%

Local misses Remote misses

H-30 � Appendix H Large-Scale Multiprocessors and Scientific Applications

Figure H.17 shows the cost in cycles for the average memory reference,
assuming the parameters in Figure H.16. Only the latencies for each reference
type are counted. Each bar indicates the contribution from cache hits, local
misses, remote misses, and three-hop remote misses. The cost is influenced by
the total frequency of cache misses and upgrades, as well as by the distribution
of the location where the miss is satisfied. The cost for a remote memory refer-
ence is fairly steady as the processor count is increased, except for Ocean. The
increasing miss rate in Ocean for 64 processors is clear in Figure H.12. As the
miss rate increases, we should expect the time spent on memory references to
increase also.

Although Figure H.17 shows the memory access cost, which is the dominant
multiprocessor cost in these benchmarks, a complete performance model would
need to consider the effect of contention in the memory system, as well as the
losses arising from synchronization delays.

Figure H.14 Data miss rate versus block size assuming a 128 KB cache and 64 pro-
cessors in total. Although difficult to see, the coherence miss rate in Barnes actually
rises for the largest block size, just as in the last section.

Miss rate

0%

4%

6%

2%

16 32 64

Block size (bytes)

FFT

128

12%

8%

10%

Miss rate

0%

2%

1%

16 32 64

Block size (bytes)

LU

128

4%

3%

Miss rate

0%

5%

10%

16 32 64

Block size (bytes)

Ocean

128

15%

Miss rate

0.0%

0.1%

16 32 64

Block size (bytes)

Barnes

128

0.3%

0.2%

Local misses Remote misses

H.5 Performance of Scientific Applications on Shared-Memory Multiprocessors � H-31

Figure H.15 The number of bytes per data reference climbs steadily as block size is
increased. These data can be used to determine the bandwidth required per node both
internally and globally. The data assume a 128 KB cache for each of 64 processors.

Characteristic
Processor clock cycles

≤ 16 processors
Processor clock cycles

17–64 processors

Cache hit 1 1

Cache miss to local memory 85 85

Cache miss to remote home directory 125 150

Cache miss to remotely cached data
(three-hop miss)

140 170

Figure H.16 Characteristics of the example directory-based multiprocessor. Misses
can be serviced locally (including from the local directory), at a remote home node, or
using the services of both the home node and another remote node that is caching an
exclusive copy. This last case is called a three-hop miss and has a higher cost because it
requires interrogating both the home directory and a remote cache. Note that this sim-
ple model does not account for invalidation time, but does include some factor for
increasing interconnect time. These remote access latencies are based on those in an
SGI Origin 3000, the fastest scalable interconnect system in 2001, and assume a 500
MHz processor.

Bytes per data
reference

Bytes per data
reference

Bytes per data
reference

Bytes per data
reference

0.0

2.0

3.0

1.0

16 32 64

Block size (bytes)

FFT

128

6.0

4.0

5.0

0.0

0.2

0.3

0.1

16 32 64

Block size (bytes)

LU

128

0.6

0.4

0.5

0.0

2.0

4.0

6.0

5.0

3.0

1.0

16 32 64

Block size (bytes)

Ocean

128

7.0

0.0

0.1

16 32 64

Block size (bytes)

Barnes

128

0.4

0.3

0.2

Local Global

H-32 � Appendix H Large-Scale Multiprocessors and Scientific Applications

Figure H.17 The effective latency of memory references in a DSM multiprocessor depends both on the relative
frequency of cache misses and on the location of the memory where the accesses are served. These plots show
the memory access cost (a metric called average memory access time in Chapter 5) for each of the benchmarks for 8,
16, 32, and 64 processors, assuming a 512 KB data cache that is two-way set associative with 64-byte blocks. The
average memory access cost is composed of four different types of accesses, with the cost of each type given in Fig-
ure H.16. For the Barnes and LU benchmarks, the low miss rates lead to low overall access times. In FFT, the higher
access cost is determined by a higher local miss rate (1–4%) and a significant three-hop miss rate (1%). The improve-
ment in FFT comes from the reduction in local miss rate from 4% to 1%, as the aggregate cache increases. Ocean
shows the biggest change in the cost of memory accesses, and the highest overall cost at 64 processors. The high
cost is driven primarily by a high local miss rate (average 1.6%). The memory access cost drops from 8 to 16 proces-
sors as the grids more easily fit in the individual caches. At 64 processors, the data set size is too small to map prop-
erly and both local misses and coherence misses rise, as we saw in Figure H.12.

Average cycles
per reference

0.0
8 16 32

Processor count

FFT

64

5.5
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5

Average cycles
per reference

0.0
8 16 32

Processor count

LU

64

5.5
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5

Average cycles
per memory
reference

0.0
8 16 32

Processor count

Barnes

64

5.5
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5

Average cycles
per reference

0.0
8 16 32

Processor count

Ocean

64

5.5
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5

Cache hit Local miss Remote miss Three-hop miss to remote cache

H.6 Performance Measurement of Parallel Processors with Scientific Applications � H-33

One of the most controversial issues in parallel processing has been how to mea-
sure the performance of parallel processors. Of course, the straightforward
answer is to measure a benchmark as supplied and to examine wall-clock time.
Measuring wall-clock time obviously makes sense; in a parallel processor, mea-
suring CPU time can be misleading because the processors may be idle but
unavailable for other uses.

Users and designers are often interested in knowing not just how well a mul-
tiprocessor performs with a certain fixed number of processors, but also how the
performance scales as more processors are added. In many cases, it makes sense
to scale the application or benchmark, since if the benchmark is unscaled, effects
arising from limited parallelism and increases in communication can lead to
results that are pessimistic when the expectation is that more processors will be
used to solve larger problems. Thus, it is often useful to measure the speedup as
processors are added both for a fixed-size problem and for a scaled version of the
problem, providing an unscaled and a scaled version of the speedup curves. The
choice of how to measure the uniprocessor algorithm is also important to avoid
anomalous results, since using the parallel version of the benchmark may under-
state the uniprocessor performance and thus overstate the speedup.

Once we have decided to measure scaled speedup, the question is how to
scale the application. Let’s assume that we have determined that running a bench-
mark of size n on p processors makes sense. The question is how to scale the
benchmark to run on m × p processors. There are two obvious ways to scale the
problem: (1) keeping the amount of memory used per processor constant and (2)
keeping the total execution time, assuming perfect speedup, constant. The first
method, called memory-constrained scaling, specifies running a problem of size
m × n on m × p processors. The second method, called time-constrained scaling,
requires that we know the relationship between the running time and the problem
size, since the former is kept constant. For example, suppose the running time of
the application with data size n on p processors is proportional to n2/p. Then with
time-constrained scaling, the problem to run is the problem whose ideal running
time on m × p processors is still n2/p. The problem with this ideal running time
has size .

Example Suppose we have a problem whose execution time for a problem of size n is pro-
portional to n3. Suppose the actual running time on a 10-processor multiproces-
sor is 1 hour. Under the time-constrained and memory-constrained scaling
models, find the size of the problem to run and the effective running time for a
100-processor multiprocessor.

H.6 Performance Measurement of Parallel Processors with
Scientific Applications

m n×

H-34 � Appendix H Large-Scale Multiprocessors and Scientific Applications

Answer For the time-constrained problem, the ideal running time is the same, 1 hour, so
the problem size is or 2.15 times larger than the original. For memory-
constrained scaling, the size of the problem is 10n and the ideal execution time is
103/10, or 100 hours! Since most users will be reluctant to run a problem on an
order of magnitude more processors for 100 times longer, this size problem is
probably unrealistic.

In addition to the scaling methodology, there are questions as to how the pro-
gram should be scaled when increasing the problem size affects the quality of the
result. Often, we must change other application parameters to deal with this
effect. As a simple example, consider the effect of time to convergence for solv-
ing a differential equation. This time typically increases as the problem size
increases, since, for example, we often require more iterations for the larger prob-
lem. Thus when we increase the problem size, the total running time may scale
faster than the basic algorithmic scaling would indicate.

For example, suppose that the number of iterations grows as the log of the
problem size. Then for a problem whose algorithmic running time is linear in the
size of the problem, the effective running time actually grows proportional to n
log n. If we scaled from a problem of size m on 10 processors, purely algorithmic
scaling would allow us to run a problem of size 10 m on 100 processors.
Accounting for the increase in iterations means that a problem of size k × m,
where k log k = 10, will have the same running time on 100 processors. This
problem size yields a scaling of 5.72 m, rather than 10 m.

In practice, scaling to deal with error requires a good understanding of the
application and may involve other factors, such as error tolerances (for example,
it affects the cell-opening criteria in Barnes-Hut). In turn, such effects often sig-
nificantly affect the communication or parallelism properties of the application as
well as the choice of problem size.

Scaled speedup is not the same as unscaled (or true) speedup; confusing the
two has led to erroneous claims (e.g., see the discussion in Section H.6). Scaled
speedup has an important role, but only when the scaling methodology is sound
and the results are clearly reported as using a scaled version of the application.
Singh, Hennessy, and Gupta [1993] describe these issues in detail.

In this section, we explore the challenge of implementing cache coherence, start-
ing first by dealing with the challenges in a snoopy coherence protocol, which we
simply alluded to in Chapter 4. Implementing a directory protocol adds some ad-
ditional complexity to a snoopy protocol, primarily arising from the absence of
broadcast, which forces the use of a different mechanism to resolve races. Fur-
thermore, the larger processor count of a directory-based multiprocessor means
that we cannot retain assumptions of unlimited buffering and must find new ways
to avoid deadlock, Let’s start with the snoopy protocols.

103 n×

H.7 Implementing Cache Coherence

H.7 Implementing Cache Coherence � H-35

As we mentioned in Chapter 4, the challenge of implementing misses in a
snoopy coherence protocol without a bus lies in finding a way to make the multi-
step miss process appear atomic. Both an upgrade miss and a write miss require
the same basic processing and generate the same implementation challenges; for
simplicity, we focus on upgrade misses. Here are the steps in handling an
upgrade miss:

1. Detect the miss and compose an invalidate message for transmission to other
caches.

2. When access to the broadcast communication link is available, transmit the
message.

3. When the invalidates have been processed, the processor updates the state of
the cache block, and then proceeds with the write that caused the upgrade
miss.

There are two related difficulties that can arise. First, how will two processors, P1
and P2, that attempt to upgrade the same cache block at the same time resolve the
race? Second, when at step 3, how does a processor know when all invalidates
have been processed so that it can complete the step?

The solution to finding a winner in the race lies in the ordering imposed by the
broadcast communication medium. The communication medium must broadcast
any cache miss to all the nodes. If P1 and P2 attempt to broadcast at the same
time, we must ensure that either P1’s message will reach P2 first or P2’s will
reach P1 first. This property will be true if there is a single channel through which
all ingoing and outgoing requests from a node must pass through and if the com-
munication network does not accept a message unless it can guarantee delivery
(i.e., it is effectively circuit switched, see Appendix E). If both P1 and P2 initiate
their attempts to broadcast an invalidate simultaneously, then the network can ac-
cept only one of these operations and delay the other. This ordering ensures that
either P1 or P2 will complete its communication in step 2 first. The network can
explicitly signal when it accepts a message and can guarantee it will be the next
transmission; alternatively, a processor can simply watch the network for its own
request, knowing that once the request is seen, it will be fully transmitted to all
processors before any subsequent messages.

Now, suppose P1 wins the race to transmit its invalidate; once it knows it has
won the race, it can continue with step 3 and complete the miss handling. There is
a potential problem, however, for P2. When P2 undertook step 1, it believed that
the block was in the shared state, but for P1 to advance at step 3, it must know
that P2 has processed the invalidate, which must change the state of the block at
P2 to invalid! One simple solution is for P2 to notice that it has lost the race, by
observing that P1’s invalidate is broadcast before its own invalidate. P2 can then
invalidate the block and generate a write miss to get the data. P1 will see its inval-
idate before P2’s, so it will change the block to modified and update the data,
which guarantees forward progress and avoids deadlock. When P1 sees the sub-
sequent invalidate to a block in the Modified state (a possibility that cannot arise
in our basic protocol discussed in Chapter 4), it knows that it was the winner of a

H-36 � Appendix H Large-Scale Multiprocessors and Scientific Applications

race. It can simply ignore the invalidate, knowing that it will be followed by a
write miss, or it can write the block back to memory and make its state invalid.

Another solution is to give precedence to incoming requests over outgoing re-
quests, so that before P2 can transmit its invalidate, it must handle any pending
invalidates or write misses. If any of those misses are for blocks with the same
address as a pending outgoing message, the processor must be prepared to restart
the write operation, since the incoming request may cause the state of the block
to change. Notice that P1 knows that the invalidates will be processed once it has
successfully completed the broadcast, since precedence is given to invalidate
messages over outgoing requests. (Because it does not employ broadcast, a pro-
cessor using a directory protocol cannot know when an invalidate is received; in-
stead, explicit acknowledgments are required, as we discuss in the next section.
Indeed, as we will see, it cannot even know it has won the race to become the
owner until its request is acknowledged.)

Reads will also require a multiple-step process, since we need to get the data
back from memory or a remote cache (in a write-back cache system), but reads
do not introduce fundamentally new problems beyond what exists for writes.

There are, however, a few additional tricky edge cases that must be handled
correctly. For example, in a write-back cache, a processor can generate a read
miss that requires a write back, which it could delay, while giving the read miss
priority. If a snoop request appears for the cache block that is to be written back,
the processor must discover this and send the data back. Failure to do so can cre-
ate a deadlock situation. A similar tricky situation exists when a processor gener-
ates a write miss, which will make a block exclusive, but before the processor
receives the data and can update the block, other processors generate read misses
for that block. The read misses cannot be processed until the writing processor
receives the data and updates the block.

One of the more difficult problems occurs in a write-back cache where the
data for a read or write miss can come either from memory or from one of the
processor caches, but the requesting processor will not know a priori where the
data will come from. In most bus-based systems, a single global signal is used to
indicate whether any processor has the exclusive (and hence the most up-to-date)
copy; otherwise, the memory responds. These schemes can work with a pipelined
interconnection by requiring that processors signal whether they have the exclu-
sive copy within a fixed number of cycles after the miss is broadcast.

In a modern multiprocessor, however, it is essentially impossible to bound the
amount of time required for a snoop request to be processed. Instead, a mecha-
nism is required to determine whether the memory has an up-to-date copy. One
solution is to add coherence bits to the memory, indicating whether the data is ex-
clusive in a remote cache. This mechanism begins to move toward the directory
approach, whose implementation challenges we consider next.

Implementing Cache Coherence in a DSM Multiprocessor

Implementing a directory-based cache coherence protocol requires overcoming
all the problems related to nonatomic actions for a snoopy protocol without the

H.7 Implementing Cache Coherence � H-37

use of broadcast (see Chapter 4), which forced a serialization on competing
writes and also ensured the serialization required for the memory consistency
model. Avoiding the need to broadcast is a central goal for a directory-based sys-
tem, so another method for ensuring serialization is necessary.

The serialization of requests for exclusive access to a memory block is easily
enforced since those requests will be serialized when they reach the unique direc-
tory for the specified block. If the directory controller simply ensures that one
request is completely serviced before the next is begun, writes will be serialized.
Because the requesters cannot know ahead of time who will win the race and
because the communication is not a broadcast, the directory must signal to the
winner when it completes the processing of the winner’s request. This is done by
a message that supplies the data on a write miss or by an explicit acknowledg-
ment message that grants ownership in response to an invalidation request.

What about the loser in this race? The simplest solution is for the system to
send a negative acknowledge, or NAK, which requires that the requesting node
regenerate its request. (This is the equivalent of a collision in the broadcast net-
work in a snooping scheme, which requires that one of the transmitting nodes
retry its communication.) We will see in the next section why the NAK approach,
as opposed to buffering the request, is attractive.

Although the acknowledgment that a requesting node has ownership is com-
pleted when the write miss or ownership acknowledgment message is transmit-
ted, we still do not know that the invalidates have been received and processed by
the nodes that were in the sharing set. All memory consistency models eventually
require (either before the next cache miss or at a synchronization point, for exam-
ple) that a processor knows that all the invalidates for a write have been pro-
cessed. In a snooping scheme, the nature of the broadcast network provides this
assurance.

How can we know when the invalidates are complete in a directory scheme?
The only way to know that the invalidates have been completed is to have the
destination nodes of the invalidate messages (the members of the sharing set)
explicitly acknowledge the invalidation messages sent from the directory. Who
should they be acknowledged to? There are two possibilities. In the first the
acknowledgments can be sent to the directory, which can count them, and when
all acknowledgments have been received, confirm this with a single message to
the original requester. Alternatively, when granting ownership, the directory can
tell the register how many acknowledgments to expect. The destinations of the
invalidate messages can then send an acknowledgment directly to the requester,
whose identity is provided by the directory. Most existing implementations use
the latter scheme, since it reduces the possibility of creating a bottleneck at a
directory. Although the requirement for acknowledgments is an additional com-
plexity in directory protocols, this requirement arises from the avoidance of a
serialization mechanism, such as the snoopy broadcast operation, which in itself
is the limit to scalability.

H-38 � Appendix H Large-Scale Multiprocessors and Scientific Applications

Avoiding Deadlock from Limited Buffering

A new complication in the implementation is introduced by the potential scale of
a directory-based multiprocessor. In Chapter 4, we assumed that the network
could always accept a coherence message and that the request would be acted
upon at some point. In a much larger multiprocessor, this assumption of unlimit-
ed buffering may be unreasonable. What happens when the network does not
have unlimited buffering? The major implication of this limit is that a cache or di-
rectory controller may be unable to complete a message send. This could lead
to deadlock.

The potential deadlock arises from three properties, which characterize many
deadlock situations:

1. More than one resource is needed to complete a transaction: Message buffers
are needed to generate requests, create replies and acknowledgments, and
accept replies.

2. Resources are held until a nonatomic transaction completes: The buffer used
to create the reply cannot be freed until the reply is accepted, for reasons we
will see shortly.

3. There is no global partial order on the acquisition of resources: Nodes can
generate requests and replies at will.

These characteristics lead to deadlock, and avoiding deadlock requires breaking
one of these properties. Freeing up resources without completing a transaction is
difficult, since the transaction must be completely backed out and cannot be left
half-finished. Hence, our approach will be to try to resolve the need for multiple
resources. We cannot simply eliminate this need, but we can try to ensure that the
resources will always be available.

One way to ensure that a transaction can always complete is to guarantee that
there are always buffers to accept messages. Although this is possible for a small
multiprocessor with processors that block on a cache miss or have a small num-
ber of outstanding misses, it may not be very practical in a directory protocol,
since a single write could generate many invalidate messages. In addition, fea-
tures such as prefetch and multiple outstanding misses increase the amount of
buffering required. There is an alternative strategy, which most systems use, and
which ensures that a transaction will not actually be initiated until we can guaran-
tee that it has the resources to complete. The strategy has four parts:

1. A separate network (physical or virtual) is used for requests and replies,
where a reply is any message that a controller waits for in transitioning
between states. This ensures that new requests cannot block replies that will
free up buffers.

2. Every request that expects a reply allocates space to accept the reply when the
request is generated. If no space is available, the request waits. This ensures
that a node can always accept a reply message, which will allow the replying
node to free its buffer.

H.7 Implementing Cache Coherence � H-39

3. Any controller can reject with a NAK any request, but it can never NAK a
reply. This prevents a transaction from starting if the controller cannot guar-
antee that it has buffer space for the reply.

4. Any request that receives a NAK in response is simply retried.

To see that there are no deadlocks with the four properties above, we must
ensure that all replies can be accepted, and that every request is eventually ser-
viced. Since a cache controller or directory controller always allocates a buffer to
handle the reply before issuing a request, it can always accept the reply when it
returns. To see that every request is eventually serviced, we need only show that
any request could be completed. Since every request starts with a read or write
miss at a cache, it is sufficient to show that any read or write miss is eventually
serviced. Since the write miss case includes the actions for a read miss as a sub-
set, we focus on showing the write misses are serviced. The simplest situation is
when the block is uncached; since that case is subsumed by the case when the
block is shared, we focus on the shared and exclusive cases. Let’s consider the
case where the block is shared:

� The CPU attempts to do a write and generates a write miss that is sent to the
directory. For simplicity, we can assume the processor is stalled. Although it
may issue further requests, it should not issue a request for the same cache
block until the first one is completed. Requests for independent blocks can be
handled separately.

� The write miss is sent to the directory controller for this memory block. Note
that although one cache controller handles all the requests for a given cache
block, regardless of its memory contents, the directory controller handles
requests for different blocks as independent events (assuming sufficient buff-
ering, which is allocated before the directory issues any further messages on
behalf of the request). The only conflict at the directory controller is when
two requests arrive for the same block. The controller must wait for the first
operation to be completed. It can simply NAK the second request or buffer it,
but it should not service the second request for a given memory block until
the first is completed.

� Now consider what happens at the directory controller: Suppose the write
miss is the next thing to arrive at the directory controller. The controller sends
out the invalidates, which can always be accepted after a limited delay by the
cache controller. Note that one possibility is that the cache controller has an
outstanding miss for the same block. This is the dual case to the snoopy
scheme, and we must once again break the tie by forcing the cache controller
to accept and act on the directory request. Depending on the exact timing, this
cache controller will either get the cache line later from the directory or will
receive a NAK and have to restart the process.

H-40 � Appendix H Large-Scale Multiprocessors and Scientific Applications

The case where the block is exclusive is somewhat trickier. Our analysis
begins when the write miss arrives at the directory controller for processing.
There are two cases to consider:

� The directory controller sends a fetch/invalidate message to the processor
where it arrives to find the block in the exclusive state. The cache controller
sends a data write back to the home directory and makes its state invalid. This
reply arrives at the home directory controller, which can always accept the
reply, since it preallocated the buffer. The directory controller sends back the
data to the requesting processor, which can always accept the reply; after the
cache is updated, the requesting cache controller notifies the processor.

� The directory controller sends a fetch/invalidate message to the node indi-
cated as owner. When the message arrives at the owner node, it finds that this
cache controller has taken a read or write miss that caused the block to be
replaced. In this case, the cache controller has already sent the block to the
home directory with a data write back and made the data unavailable. Since
this is exactly the effect of the fetch/invalidate message, the protocol operates
correctly in this case as well.

We have shown that our coherence mechanism operates correctly when the
cache and directory controller can accept requests for operation on cache blocks
for which they have no outstanding operations in progress, when replies are
always accepted, and when requests can be NAKed and forced to retry. Like the
case of the snoopy protocol, the cache controller must be able to break ties, and it
always does so by favoring the instructions from the directory. The ability to
NAK requests is what allows an implementation with finite buffering to avoid
deadlock.

Implementing the Directory Controller

To implement a cache coherence scheme, the cache controller must have the
same abilities it needed in the snoopy case, namely, the capability of handling re-
quests for independent blocks while awaiting a response to a request from the lo-
cal processor. The incoming requests are still processed in order, and each one is
completed before beginning the next. Should a cache controller receive too many
requests in a short period of time, it can NAK them, knowing that the directory
will subsequently regenerate the request.

The directory must also be multithreaded and able to handle requests for mul-
tiple blocks independently. This situation is somewhat different than having the
cache controller handle incoming requests for independent blocks, since the
directory controller will need to begin processing one request while an earlier one
is still underway. The directory controller cannot wait for one to complete before
servicing the next request, since this could lead to deadlock. Instead, the direc-
tory controller must be reentrant; that is, it must be capable of suspending its
execution while waiting for a reply and accept another transaction. The only

H.8 The Custom Cluster Approach: Blue Gene/L � H-41

place this must occur is in response to read or write misses, while waiting for a
response from the owner. This leads to three important observations:

1. The state of the controller need only be saved and restored while either a
fetch operation from a remote location (or a fetch/invalidate) is outstanding.

2. The implementation can bound the number of outstanding transactions being
handled in the directory by simply NAKing read or write miss requests that
could cause the number of outstanding requests to be exceeded.

3. If instead of returning the data through the directory, the owner node forwards
the data directly to the requester (as well as returning it to the directory), we
can eliminate the need for the directory to handle more than one outstanding
request. This motivation, in addition to the reduction of latency, is the reason
for using the forwarding style of protocol. There are other complexities from
forwarding protocols that arise when requests arrive closely spaced in time.

The major remaining implementation difficulty is to handle NAKs. One alter-
native is for each processor to keep track of its outstanding transactions, so it
knows, when the NAK is received, what the requested transaction was. The alter-
native is to bundle the original request into the NAK, so that the controller receiv-
ing the NAK can determine what the original request was. Because every request
allocates a slot to receive a reply and a NAK is a reply, NAKs can always be
received. In fact, the buffer holding the return slot for the request can also hold
information about the request, allowing the processor to reissue the request if it is
NAKed.

 In practice, great care is required to implement these protocols correctly and
to avoid deadlock. The key ideas we have seen in this section—dealing with non-
atomicity and finite buffering—are critical to ensuring a correct implementation.
Designers have found that both formal and informal verification techniques are
helpful for ensuring that implementations are correct.

Blue Gene/L (BG/L) is a scalable message-passing supercomputer whose design
offers unprecedented computing density as measured by compute power per watt.
By focusing on power efficiency, BG/L also achieves unmatched throughput per
cubic foot. High computing density, combined with cost-effective nodes and
extensive support for RAS, allows BG/L to efficiently scale to very large proces-
sor counts.

BG/L is a distributed-memory, message-passing computer but one that is
quite different from the cluster-based, often throughput-oriented computers that
rely on commodity technology in the processors, interconnect, and, sometimes,
the packaging and system-level organization. BG/L uses a special customized
processing node that contains two processors (derived from low-power, lower-
clock-rate PowerPC 440 chips used in the embedded market), caches, and

H.8 The Custom Cluster Approach: Blue Gene/L

H-42 � Appendix H Large-Scale Multiprocessors and Scientific Applications

interconnect logic. A complete computing node is formed by adding SDRAM
chips, which are the only commodity semiconductor parts in the BG/L design.

BG/L consists of up to 64K nodes organized into 32 racks each containing 1K
nodes in about 50 cubic feet. Each rack contains two double-sided boards with
512 nodes each. Due to the high density within a board and rack, 85% of the
interconnect is within a single rack, greatly reducing the complexity and latency
associated with connections between racks. Furthermore, the compact size of a
rack, which is enabled by the low power and high density of each node, greatly
improves efficiency, since the interconnection network for connections within a
single rack are integrated into the single compute chip that comprises each node.

Appendix E discusses the main BL/G interconnect network, which is a three-
dimensional torus. There are four other networks: Gigabit Ethernet, connected at
designated I/O nodes, a JTAG network used for test, a barrier network, and a glo-
bal collective network. The barrier network contains four independent channels
and can be used for performing a global or or a global and across all the proces-
sors with latency of less than 1.5 microseconds. The global collective network
connects all the processors in a tree and is used for global operations. It supports
a variety of integer reductions directly, avoiding the need to involve the proces-
sor, and leading to times for large-scale reductions that are 10–100 times faster
than in typical supercomputers. The collective network can also be used to broad-
cast a single value efficiently. Support for the collective network as well as the
torus is included in the chip that forms of the heart of each processing node.

The Blue Gene/L Computing Node

Each BG/L node consists of a single processing chip and several SDRAM chips.
The BG/L processing chip, shown in Figure H.18, contains the following:

1. Two PowerPC 440 CPUs, each a two-issue superscalar with a seven-stage
pipeline and speculative out-order issue capability, clocked at a modest (and
power-saving) 700 MHz. Each CPU has separate 32 KB I and D caches that
are nonbblocking with up to four outstanding misses. Cache coherence must
be enforced in software. Each CPU also contains a pair of floating-point
coprocessors, each with its own FP register set and each capable of issuing a
multiply-add each clock cycle, supporting a special SIMD instruction set
capability that includes complex arithmetic using a pair of registers and 128-
bit operands.

2. Separate fully associative L2 caches, each with 2 KB of data and a 128-byte
block size, that act essentially like prefetch buffers. The L2 cache controllers
recognize streamed data access and also handle prefetch from L3 or main
memory. They have low latency (11 cycles) and provide high bandwidth (5
bytes per clock). The L2 prefetch buffer can supply 5.5 GB/sec to the L1
caches.

3. A 4 MB L3 cache implemented with embedded DRAM. Each L2 buffer is
connected by a bus supplying 11 GB/sec of bandwidth from the L3 cache.

H.8 The Custom Cluster Approach: Blue Gene/L � H-43

4. A memory bus supporting 256–512 MB of DDR DRAMS and providing 5.5
GB/sec of memory bandwidth to the L3 cache. This amount of memory
might seem rather modest for each node, given that the node contains two
processors, each with two FP units. Indeed Amdahl’s Rule of Thumb (1 MB
per 1 MIPS) and an assumption of 25% of peak performance would favor
about 2.7 times the memory per node. For floating-point-intensive applica-
tions where the computational need usually grows faster than linear in the
memory size, the upper limit of 512 MB/node is probably reasonable.

5. Support logic for the five interconnection networks.

By placing all the logic other than DRAMs into a single chip, BG/L achieves
higher density, lower power, and lower cost, making it possible to pack the pro-
cessing nodes extremely densely. The density in terms allows the interconnection
networks to be low latency, high bandwidth, and quite cost-effective. The combi-
nation yields a supercomputer that scales very cost-effectively, yielding an order-
of-magnitude improvement in GFLOPs/watt over other approaches as well as
significant improvements in GFLOPS/$ for very large-scale multiprocessors.

Figure H.18 The BG/L processing node. The unfilled boxes are the PowerPC proces-
sors with added floating-point units. The solid grey boxes are network interfaces, and
the shaded lighter grey boxes are part of the memory system, which is supplemented
by DDR RAMS.

32K/32K L1

256
11 GB/sec

256

5.
5

G
B

/s
ec

10
24

22
 G

B
/s

ec14
4

E
C

C

L2
 p

re
fe

tc
h

bu
ffe

r

12
8

PPC 440
CPU

Shared L3
directory for
embedded

DRAM

Includes
error

correction
control
(ECC)

Double-issue
FPU

32K/32K L1

Ethernet
Gbit

Gigabit
Ethernet

Snoop

L2
 p

re
fe

tc
h

bu
ffe

r

12
8

PPC 440
CPU

Double-issue
FPU

JTAG
access

IEEE
1149.1
(JTAG)

Torus

6 out and
6 in, each at
1.4 GB/sec

link

5.5 GB/sec

Collective

3 out and
3 in, each at
2.8 GB/sec

link

Global
interrupt/
lockbox

4 global
barriers or
interrupts

DDR
control

with ECC

144-bit-wide
DDR

256/ 512 MB

256

4 MB
embedded

DRAM

L3 cache
or

memory

256
11 GB/sec

128

H-44 � Appendix H Large-Scale Multiprocessors and Scientific Applications

For example, BG/L with 64K nodes has a peak performance of 360 TF and
uses about 1.4 megawatts. To achieve 360 TF peak using the Power5+, which is
the most power-efficient, high-end FP processor, would require about 23,500 pro-
cessors (the dual processor can execute up to 8 FLOPs/clock at 1.9 GHz). The
power requirement for just the processors, without external cache, DRAM, or
interconnect, would be about 2.9 megawatts, or about double the power of the
entire BG/L system. Likewise, the smaller die size of the BG/L node and its need
for DRAMs as the only external chip produce significant cost savings versus a
node built using a high-end multiprocessor. Figure H.19 shows a photo of the
64K node BG/L. The total size occupied by this 128K-processor multiprocessor
is comparable to that occupied by earlier multiprocessors with 16K processors.

The landscape of large-scale multiprocessors has changed dramatically over the
past five to ten years. While some form of clustering is now used for all the
largest-scale multiprocessors, calling them all “clusters” ignores significant dif-
ferences in architecture, implementation style, cost, and performance. Bell and
Gray [2002] discuss this trend, arguing that clusters will dominate. While Don-
garra et al. [2005] agree that some form of clustering is almost inevitable in the
largest multiprocessors, they develop a more nuanced classification that attempts
to distinguish among a variety of different approaches.

Figure H.19 The 64K-processor Blue Gene/L system.

H.9 Concluding Remarks

H.9 Concluding Remarks � H-45

In Figure H.20 we summarize the range of terminology that has been used for
large-scale multiprocessors and focus on defining the terms from an architectural
and implementation perspective. Figure H.21 shows the hierarchical relationship
of these different architecture approaches. Although there has been some conver-
gence in architectural approaches over the past 15 years, the TOP500 list, which
reports the 500 fastest computers in the world as measured by the Linpack bench-
mark, includes commodity clusters, customized clusters, SMPs, DSMs, and con-
stellations, as well as processors that are both scalar and vector.

Nonetheless, there are some clearly emerging trends, which we can see by
looking at the distribution of types of multiprocessors in the TOP500 list:

1. Clusters represent a majority of the systems. The lower development effort
for clusters has clearly been a driving force in making them more popular.
The high-end multiprocessor market has not grown sufficiently large to sup-
port full-scale, highly customized designs as the dominant choice.

2. The majority of the clusters are commodity clusters, often put together by
users, rather than a system vendor designing a standard product.

Terminology Characteristics Examples

MPP Originally referred to a class of architectures characterized by large
numbers of small, typically custom processors and usually using an SIMD
style architecture.

Connection Machines
CM-2

SMP (symmetric
multiprocessor)

Shared-memory multiprocessors with a symmetric relationship to
memory; also called UMA (uniform memory access). Scalable versions of
these architectures used multistage interconnection networks, typically
configured with at most 64–128 processors.

SUN Sunfire, NEC
Earth Simulator

DSM (distributed
shared memory)

A class of architectures that support scalable shared memory in a
distributed fashion. These architectures are available both with and without
cache coherence and typically can support hundreds to thousands of
processors.

SGI Origin and Altix,
Cray T3E, Cray X1,
IBM p5 590/5

Cluster A class of multiprocessors using message passing. The individual nodes
are either commodities or customized, likewise the interconnect.

See commodity and
custom clusters

Commodity
cluster

A class of clusters where the nodes are truly commodities, typically
headless workstations, motherboards, or blade servers, connected with a
SAN or LAN usually accessible via an I/O bus.

“Beowulf” and other
“homemade” clusters

Custom cluster A cluster architecture where the nodes and the interconnect are customized
and more tightly integrated than in a commodity cluster. Also called
distributed memory or message passing multiprocessors.

IBM Blue Gene, Cray
XT3

Constellation Large-scale multiprocessors that use clustering of smaller-scale
multiprocessors, typically with a DSM or SMP architecture and 32 or more
processors.

Larger SGI Origin/
Altix, ASC Purple

Figure H.20 A classification of large-scale multiprocessors. The term MPP, which had the original meaning
described above, has been used more recently, and less precisely, to refer to all large-scale multiprocessors. None of
the commercial shipping multiprocessors is a true MPP in the original sense of the word, but such an approach may
make sense in the future. Both the SMP and DSM class includes multiprocessors with vector support. The term con-
stellation has been used in different ways; the above usage seems both intuitive and precise [Dongarra et al. 2005].

H-46 � Appendix H Large-Scale Multiprocessors and Scientific Applications

3. Although commodity clusters dominate in their representation, the top 25
entries on the list are much more varied and include 9 custom clusters (prima-
rily instances of Blue Gene or Cray XT3 systems), 2 constellations, 8 com-
modity clusters, 2 SMPs (one of which is the NEC Earth Simulator, which
has nodes with vector processors), and 4 DSM multiprocessors.

4. Vector processors, which once dominated the list, have almost disappeared.

5. The IBM Blue Gene dominates the top 10 systems, showing the advantage of
an approach the uses some commodity processor cores, but customizes many
other functions and balances performance, power, and packaging density.

6. Architectural convergence has been driven more by market effects (lack of
growth, limited suppliers, etc.) than by a clear-cut consensus on the best
architectural approaches.

Software, both applications and programming languages and environments,
remains the big challenge for parallel computing, just as it was 30 years ago,
when multiprocessors such as the Illiac IV were being designed. The combina-
tion of ease of programming with high parallel performance remains elusive.
Until better progress is made on this front, convergence towards a single pro-
gramming model and underlying architectural approach (remembering that for
uniprocessors, we essentially have one programming model and one architectural
approach!) will be slow or will be driven by factors other than proven architec-
tural superiority.

Figure H.21 The space of large-scale multiprocessors and the relation of different classes.

Larger
multiprocessors

Shared address
space

Symmetric shared
memory (SMP)

Examples: IBM eserver,
SUN Sunfire

Distributed shared
memory (DSM)

Commodity clusters:
Beowulf and others

Custom
cluster

Uniform cluster:
IBM BlueGene

Cache coherent:
ccNUMA:

SGI Origin/Altix

Constellation cluster of
DSMs or SMPs

SGI Altix, ASC Purple

Noncache coherent:
Cray T3E, X1

Distributed
address space

