ResearchGate

See discussions, stats, and author profiles for this publication at:

New Speed Records for Salsa20 Stream Cipher
Using an Autotuning Framework on GPUs

Conference Paper - March 2013

DOI: 10.1007/978-3-642-38553-7_11

CITATIONS READS
2 122
3 authors:
@ Queen's University Belfast e} Indian Statistical Institute
19 PUBLICATIONS 79 CITATIONS 82 PUBLICATIONS 484 CITATIONS
SEE PROFILE SEE PROFILE

a Nanyang Technological University

132 PUBLICATIONS 701 CITATIONS

SEE PROFILE

Some of the authors of this publication are also working on these related projects:

Project MIRA: Micro-Architectural Reliability Analysis for Deep Submicron Technology

Project GEMSCLAIM: GreenEr Mobile Systems by Cross LAyer Integrated energy Management

All content following this page was uploaded by on 05 April 2016.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/266002588_New_Speed_Records_for_Salsa20_Stream_Cipher_Using_an_Autotuning_Framework_on_GPUs?enrichId=rgreq-840e7d6f4418bfe22c5dc519926d95bf-XXX&enrichSource=Y292ZXJQYWdlOzI2NjAwMjU4ODtBUzozNDczMTk5NzYzODI0NjRAMTQ1OTgxODk0MzE3Ng%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/266002588_New_Speed_Records_for_Salsa20_Stream_Cipher_Using_an_Autotuning_Framework_on_GPUs?enrichId=rgreq-840e7d6f4418bfe22c5dc519926d95bf-XXX&enrichSource=Y292ZXJQYWdlOzI2NjAwMjU4ODtBUzozNDczMTk5NzYzODI0NjRAMTQ1OTgxODk0MzE3Ng%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/MIRA-Micro-Architectural-Reliability-Analysis-for-Deep-Submicron-Technology?enrichId=rgreq-840e7d6f4418bfe22c5dc519926d95bf-XXX&enrichSource=Y292ZXJQYWdlOzI2NjAwMjU4ODtBUzozNDczMTk5NzYzODI0NjRAMTQ1OTgxODk0MzE3Ng%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/GEMSCLAIM-GreenEr-Mobile-Systems-by-Cross-LAyer-Integrated-energy-Management?enrichId=rgreq-840e7d6f4418bfe22c5dc519926d95bf-XXX&enrichSource=Y292ZXJQYWdlOzI2NjAwMjU4ODtBUzozNDczMTk5NzYzODI0NjRAMTQ1OTgxODk0MzE3Ng%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-840e7d6f4418bfe22c5dc519926d95bf-XXX&enrichSource=Y292ZXJQYWdlOzI2NjAwMjU4ODtBUzozNDczMTk5NzYzODI0NjRAMTQ1OTgxODk0MzE3Ng%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ayesha_Khalid8?enrichId=rgreq-840e7d6f4418bfe22c5dc519926d95bf-XXX&enrichSource=Y292ZXJQYWdlOzI2NjAwMjU4ODtBUzozNDczMTk5NzYzODI0NjRAMTQ1OTgxODk0MzE3Ng%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ayesha_Khalid8?enrichId=rgreq-840e7d6f4418bfe22c5dc519926d95bf-XXX&enrichSource=Y292ZXJQYWdlOzI2NjAwMjU4ODtBUzozNDczMTk5NzYzODI0NjRAMTQ1OTgxODk0MzE3Ng%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Queens_University_Belfast?enrichId=rgreq-840e7d6f4418bfe22c5dc519926d95bf-XXX&enrichSource=Y292ZXJQYWdlOzI2NjAwMjU4ODtBUzozNDczMTk5NzYzODI0NjRAMTQ1OTgxODk0MzE3Ng%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ayesha_Khalid8?enrichId=rgreq-840e7d6f4418bfe22c5dc519926d95bf-XXX&enrichSource=Y292ZXJQYWdlOzI2NjAwMjU4ODtBUzozNDczMTk5NzYzODI0NjRAMTQ1OTgxODk0MzE3Ng%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Goutam_Paul2?enrichId=rgreq-840e7d6f4418bfe22c5dc519926d95bf-XXX&enrichSource=Y292ZXJQYWdlOzI2NjAwMjU4ODtBUzozNDczMTk5NzYzODI0NjRAMTQ1OTgxODk0MzE3Ng%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Goutam_Paul2?enrichId=rgreq-840e7d6f4418bfe22c5dc519926d95bf-XXX&enrichSource=Y292ZXJQYWdlOzI2NjAwMjU4ODtBUzozNDczMTk5NzYzODI0NjRAMTQ1OTgxODk0MzE3Ng%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Indian_Statistical_Institute?enrichId=rgreq-840e7d6f4418bfe22c5dc519926d95bf-XXX&enrichSource=Y292ZXJQYWdlOzI2NjAwMjU4ODtBUzozNDczMTk5NzYzODI0NjRAMTQ1OTgxODk0MzE3Ng%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Goutam_Paul2?enrichId=rgreq-840e7d6f4418bfe22c5dc519926d95bf-XXX&enrichSource=Y292ZXJQYWdlOzI2NjAwMjU4ODtBUzozNDczMTk5NzYzODI0NjRAMTQ1OTgxODk0MzE3Ng%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Anupam_Chattopadhyay?enrichId=rgreq-840e7d6f4418bfe22c5dc519926d95bf-XXX&enrichSource=Y292ZXJQYWdlOzI2NjAwMjU4ODtBUzozNDczMTk5NzYzODI0NjRAMTQ1OTgxODk0MzE3Ng%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Anupam_Chattopadhyay?enrichId=rgreq-840e7d6f4418bfe22c5dc519926d95bf-XXX&enrichSource=Y292ZXJQYWdlOzI2NjAwMjU4ODtBUzozNDczMTk5NzYzODI0NjRAMTQ1OTgxODk0MzE3Ng%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Nanyang_Technological_University?enrichId=rgreq-840e7d6f4418bfe22c5dc519926d95bf-XXX&enrichSource=Y292ZXJQYWdlOzI2NjAwMjU4ODtBUzozNDczMTk5NzYzODI0NjRAMTQ1OTgxODk0MzE3Ng%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Anupam_Chattopadhyay?enrichId=rgreq-840e7d6f4418bfe22c5dc519926d95bf-XXX&enrichSource=Y292ZXJQYWdlOzI2NjAwMjU4ODtBUzozNDczMTk5NzYzODI0NjRAMTQ1OTgxODk0MzE3Ng%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Anupam_Chattopadhyay?enrichId=rgreq-840e7d6f4418bfe22c5dc519926d95bf-XXX&enrichSource=Y292ZXJQYWdlOzI2NjAwMjU4ODtBUzozNDczMTk5NzYzODI0NjRAMTQ1OTgxODk0MzE3Ng%3D%3D&el=1_x_10&_esc=publicationCoverPdf

New Speed Records for Salsa20 Stream Cipher
Using an Autotuning Framework on GPUs*

Ayesha Khalid!, Goutam Paul?, and Anupam Chattopadhyay*

! Institute for Communication Technologies and Embedded Systems,
RWTH Aachen University, Aachen 52074, Germany
{ayesha.khalid,anupam.chattopadhyay}@ice.rwth-aachen.de
2 Department of Computer Science and Engineering,
Jadavpur University, Kolkata 700 032, India
goutam.paul@ieee.org

Abstract. Since the introduction of the CUDA programming model,
GPUs are considered a viable platform for accelerating non-graphical ap-
plications. Many cryptographic algorithms have been reported to achieve
remarkable performance speedups, especially block ciphers. For stream
ciphers, however, the lack of reported GPU acceleration endeavors is
due to their inherent iterative structures that prohibit parallelization.
In this paper, we propose an efficient implementation methodology for
data-parallel cryptographic functions in a batch processing fashion on
modern GPUs in general and optimizations for Salsa20 in particular. We
present an autotuning framework to reach the most optimized set of de-
vice and application parameters for Salsa20 kernel variants with through-
put maximization as a figure of merit. The peak performance achieved
by our implementation for Salsa20/12 is 2.7 GBps and 43.44 GBps with
and without memory transfers respectively on NVIDIA GeForce GTX
590. These figures beat the fastest reported GPU implementation of any
stream cipher in the eSTREAM portfolio including Salsa20/12, as well
as the block cipher AES optimized by hand-tuning, and thus, to the best
of our knowledge set a new speed record.

Keywords: CUDA, eSTREAM, GPU, Salsa20, Salsa20/r, stream
cipher.

1 Introduction and Motivation

Performance enhancement on a GPU is a function of the extent of parallelism
within the application. In case of symmetric block ciphers, for the encryption
of long messages, the plaintext is first partitioned into chunks of the cipher’s
blocksize and then encrypted. For avoiding the weakness of generating iden-
tical ciphertexts for identical plaintext blocks, chaining dependencies between
adjacent plaintext blocks are added, defined by modes of operations. The ci-
phertext C; for the i*" plaintext block P; under different modes of operations is

* This work was done in part while the second author was visiting RWTH Aachen,
Germany as an Alexander von Humboldt Fellow.

A. Youssef, A. Nitaj, A.E. Hassanien (Eds.): AFRICACRYPT 2013, LNCS 7918, pp. 189-PU7] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

190 A. Khalid, G. Paul, and A. Chattopadhyay

given below. Here I'V stands for the Initialization Vector and Ej stands for the
encryption function parametrized by the secret key k.

Operation Mode C;
Electronic codebook (ECB) E(P;)
Counter (CTR) P; @ Ej(nonce, counter)
Cipher block chaining (CBC) Ep(Pi®Ci—1),Co =1V
Propagating CBC (PCBC) Ey(P; @& Pi—1 ®Ci—1),Po®Co =1V
Cipher feedback (CFB) Er(Ci—1)® P;,Co =1V

Observe that all the modes of operation of block ciphers are not parallelizable.
The ECB and CTR modes of operation pose encryption as a massively parallel
problem with all the plaintext blocks being available for simultaneous encryp-
tion without any dependency. However, in CBC, PCBC and CFB modes, due
to the dependency or a “carry over” from the previous block, the encryption
must progress sequentially on a block by block basis. Consequently, almost all
the results of GPU based acceleration undertake block cipher encryption or de-
cryption in Electronic Codebook (ECB) or Counter (CTR) mode for which the
inter-dependency between data blocks does not exist and a parallel encryption
of blocks of plaintext data is possible.

The use of stream ciphers is best suited for applications requiring high through-
put and where the amount of data is either unknown, or continuous. A block
cipher is generic in nature and can be used as a stream cipher in CTR mode. In
comparison to block ciphers, stream ciphers are simpler and faster and typically
execute at a higher speed than block ciphers [3]. Using a block cipher as a stream
ciphers is therefore an overkill and consequently, results in a lower throughput
of encryption in comparison. For example, on a Core 2 Intel processor, 20 rounds
of Salsa20 stream cipher run at 3.93 cycles/byte, while 10 rounds of AES block
cipher are reported to run more than twice as slow at 9.2 cycles/byte for long
data streams (bitsliced AES-CTR) [2]. In this paper, we focus on the GPU
implementation of Salsa20 series [4] of stream ciphers.

1.1 Why Salsa20?

The eSTREAM [I] competition was created to attract stream ciphers in two
separate profiles, namely for software and hardware platforms. Out of 34 initial
submissions, four software stream ciphers, namely, HC-128, Rabbit, Salsa20/12,
SOSEMANUK and three hardware stream ciphers, namely, Grain vl, MICKEY
2.0 and Trivium made into the final portfolio [I]. Unlike the parallelizable modes
of operations defined for block ciphers, most stream ciphers do not have the lib-
erty of employing the “divide and rule” policy on chunks of plaintext and exhort
parallelism on GPUs. Their highly iterative structures have inter-dependencies
on subsequent keystream values generated.

For example, in case of HC-128 [I4], the limitation on parallelization of the
keystream generation routine from two S-boxes P and @ is severe. This is because
there are inter-S-box as well as intra-S-box dependencies. The update of the
values in S-boxes is a function of previous index values in the array (update
of Qj] requires Q[j B 3], Q[B 10] and Q[j B 511], where B is subtraction

New Speed Records for Salsa20 Stream Cipher 191

modulo 512). This limitation renders no more than 3 parallel threads deployment
to ensure correctness of results [8]. The other five eSTREAM finalists are also
no different. The update of the internal states for generation of next block of
keystream is dependent on its previous values.

Salsa20 [4] has an edge over the rest of the stream ciphers for mapping on
GPUs, since it has no chaining or dependence between blocks of data dur-
ing encryption / decryption. Hence a large number of parallel homogeneous
threads can be subjected to plaintext data chunks enabling instruction execu-
tion in a Single Instruction Multiple Thread (SIMT) fashion exploiting well
the parallelism offered by many-core architecture of GPUs. Each block takes
a nonce, a secret key, constants and a counter and combines them to gener-
ate a block of keystream. For additive stream ciphers the keystream generation
is independent of the plaintext. For generating ciphertext, keystream is sim-
ply XOR-ed with the plaintext. This property motivated us to take up and
report an efficient implementation of Salsa20 stream ciphers on recent graphics
hardware.

1.2 Why Autotuning?

Another motivation of the work was the development of an autotuning frame-
work for cryptographic kernels with optimization of throughput performance
in mind. The recommended autotuning framework can tune optimally to other
and newer devices of NVIDIA GPUs and can be extended to other cryptographic
algorithms. The need of such autotuners is emphasized by the fact that consider-
ing device occupancy as a figure of merit is not guaranteed to achieve mazximized
throughput. Extensive experimentation is recommended with variation of factors
like register usage, thread-block sizes, loop unroll factor etc. The implementa-
tion results after autotuning stand out in performance compared to hand-tuned
codes for Salsa20.

Autotuning methodologies for multi-core devices are gaining popularity since
hand-tuning a large number of parameters optimally for an algorithm on a ma-
chine is hard. Most of these autotuning efforts are limited to either a class of
similar algorithms, a family of similar devices or an optimization strategy of
one parameter for performance enhancement. Murthy et al. studied the effect
of loop unrolling on various GPGPU programs and claimed 70 percent better
throughput by optimally unrolling iterations [11]. A class of algorithms exten-
sively undertaken for autotuning is General Matrix Multiply (GEMM), a part
of Basic Linear Algebra Subprograms (BLAS) for matrix multiplication [I§].
Kurzak et al. presented the optimized choice of tiling and thread arrangement
for various versions of GEMM mapped on Fermi family of NVIDIA GPUs [9].
Our autotuning framework is similar in spirit to their work, however specialized
for symmetric cryptographic schemes, for which no autotuning endeavors have
been reported so far.

192 A. Khalid, G. Paul, and A. Chattopadhyay

1.3 Owur Contributions

The major contributions of our work are summarized as follows.

(1) We introduce a batch processing framework for processing any parallelizable
cryptographic task in a hybrid CPU-GPU environment.

(2) We recommend a better memory hierarchy utilization for Salsa20 kernels,
i.e., use of constant memory instead of shared memory for keeping the initial
state vector for Salsa20 (boosting throughput considerably).

(3) We propose an autotuning framework for Salsa20 kernels with two goals
in mind: fast device portability and selection of application-specific, device-
specific and compiler-specific optimization parameters for throughput max-
imization. Performance tuning by various parameter search space genera-
tion and pruning is generic enough to be extended to other cryptographic
schemes, for which no autotuning framework has been reported.

(4) Throughput curves for very long message streams encrypted by Salsa20/r,
with and without memory transfers are presented. We hereby report so far
the fastest implementation results for Salsa20 variants mapped on any GPU.

2 Parallelism Opportunities of Salsa20 in GPUs

We begin with a functional description of the Salsa20 stream cipher, followed
by an overview of the CUDA programming model for NVIDIA GPUs. Then
we connect these two by critically analyzing the parallelization opportunities of
Salsa20 in GPU.

2.1 Description of Salsa20

Salsa20 accepts four types of inputs, each consisting of 32-bit words: an input
key of either 256-bit (ko, k1, ..., k7) or 128-bit (k4 = ko, ..., k7 = k3) size, a 64-bit
nonce (ng,n1), a 64-bit counter (to,t1) and four words of pre-defined constants
¢;, whose values are dependent upon the key size.

Initialization. These inputs are arranged in a predefined order into a 4x4 state
vector X, as follows.

rog L1 T2 I3 ¢0 ko k1 ko
T4 Ty Te X7 ks ¢1 no n1

X = = .
Tg T9 T1io T11 to t1 @2 ka

T12 T13 T14 T1s ks ke k7 ¢3

Keystream Generation. The state vector is subjected to a series of rounds
composed of additions, cyclic rotations and XORs, to achieve a random per-
mutation. Originally, the number of rounds was set to 20 (Salsa20/r, r=20);
however, the version included in the eSTREAM portfolio [I], it was reduced to

12 rounds, for performance reasons.
Then Salsa20/r function for keystream generation can be represented
mathematically as:

New Speed Records for Salsa20 Stream Cipher 193

Salsa20;(X) = DoubleRound”/?(X)+X, with Double Round(X) = Row Round(ColumnRound(X)).

Each double round comprises of four QuarterRounds (in short, QR) performed
first on the columns of the state vector X and then on the rows of the output.

Y = (yo,91,---,y15) = ColumnRound(X), and Z = (2o, 21, ..., 215) = RowRound(Y'), where

(Y0, Y4, ys, y12) = QR(w0, T4, T8, T12), (y5,v9,Y13,y1) = QR(x5, 9, T13,T1),
(Y10, Y14, Y2, Y6) = QR(x10, T14, T2, T6), (Y15,¥3,Y7,y11) = QR(T15, 23,7, T11),
(20, 21, 22, 23) = QR(yo0, y1,¥2,Y3), (25, 26, 27, 24) = QR(Ys, Y6, Y7, Ya),

(210, 211, 28, 29) = QR(y10, Y11, Ys, Y9), (215, 212, 213, 214) = QR(y15, Y12, Y13, Y14)-

Each Quarter Round(a,b, ¢, d) consists of four ARXrounds, comprising of addi-
tions (A), cyclic rotations (R) and XOR (X) operations only, as below:

b= ((a4+d)KT7),c=ch((b+a)K9),d=dd ((c+b) K 13), a=a® ((d + c) K 18).

Encryption and Decryption. A 16-word ciphertext block C'is calculated sim-
ply by bitwise XOR-ing a 16-word plaintext block P with the 16-word keystream
block S. On the receiver side, the same keystream, when bitwise XOR-ed with
the ciphertext C, reproduces the plaintext P.

2.2 CUDA Programming Model Overview

CUDA defines a convenient programming model for heterogeneous computing
environment for a CPU host and GPU device. This section briefly presents
NVIDIA GPU architecture and its programming environment. The reader is
kindly referred to CUDA C programming guide [I6] and Fermi Architecture
manual [15] for more information.

Execution Model. CUDA device execution model is depicted in Fig.[Il Parallel
portions of an application, executed on the device are called kernels. A Kernel
call launches a number of threads, each executing the same code but having a
unique threadl D. Threads are forwarded to the CUDA device in groups called
warps for execution. A threadblock is a batch of threads that may or may not
cooperate with each other by sharing data or by synchronizing their execution.
Threads from different threadblocks cannot cooperate.

Kernels are launched in grids for execution, comprising of one or more
threadblocks. The grid dimensions are specified by blocksPerGrid and
threadsPerBlock. A CUDA device consists of several Streaming Multiproces-
sors (SM), each responsible for handling one or more blocks in a grid. Threads
in a block are not divided across multiple SMs.

Memory Model. CUDA provides explicit methods to organize memory archi-
tecture. Local variables within a kernel reside in registers (regs) or in the off-chip
local memory (Imem). Shared memory (shmem) is shared by each threadblock.
Global memory (gmem) is accessible by all threads as well as host. The lifetime
of global memory is from allocation to de-allocation by the host. However, for
the other memories mentioned, the lifetime is only during the kernel execution.
Other than these memories, each thread within a grid can access read-only, con-
stant and texture memories. These memories can be modified from the host only,

194 A. Khalid, G. Paul, and A. Chattopadhyay

Host Device e =T
Gl i Block (0,0) Block (1,0)

[sweawenoy || [seavenoy]

==l ==

[eesaoo|[reesacol]

Y Local Local Local Local
|:| E i Memory Memory [Memory Memory|

Book @) . = |

Bl
(
Block Bl
0.1) (1)

Thread (0,0) H Thread (1,0) ‘

Thread| Thread| Thread| Thread| Thread|
©0) | o) | @0) | BO) | (40)

[Thread| Thread| Thread| Thread| Thread|
0| @y | @y | ey | @y

s s e ke e

Fig.1. CUDA GPU execution model [16]

and are useful for storing immutable data structures like lookup tables. The per-
formance of any algorithmic implementation on the GPUs depends heavily on
the proper utilization of this memory hierarchy.

2.3 Analyzing Parallelism Opportunities of Salsa20

The immense parallelism offered by the GPUs for acceleration can be better
harnessed by a careful study of the parallelism opportunities offered by the ap-
plication intended for mapping on it. The degree of parallelism also effects the
potential throughput performance achievable after mapping. For Salsa20, we ob-
serve two categories of parallelism.

Functional Parallelism. As evident from Section I each block of 64 bytes
of Salsa20 keystream can be independently generated and mixed with data
to get the ciphertext. Salsa20/r has r/2 Double Rounds, each comprising of
a ColumnRound and a RowRound. These Column or Row-Rounds undergo 4
ARXrounds for each row/column. Hence a total of 16 x r invertible ARX rounds
complete the keystream generation for one block of Salsa20/r. A CUDA compat-
ible device, capable of launching ¢ parallel threads, each undertaking one data
block of plaintext, will give a throughput of (¢t x 64)/(16 x r x «) Bytes/sec if «
is the time taken for one ARXround as depicted in Fig. 2l We ignore the final
addition of DoubleRound output with the state vector for keystream generation
since its overhead is negligible in comparison.

Data Parallelism. In Salsa20, each Quarter Round operates on either a row
or a column of the 4x4 array. Each of the four ARXrounds constitutes of a
Quarter Round, modifying exactly one value of that row or column. Hence 4
parallel Quarter Rounds can be executed due to absence of inter-column/row
dependence. Consequently, 16 x r transformations of one Salsa20 block can be
broken down as 4 x r transformations mapped on 4 parallel threads giving a
throughput of (¢t x 64)/(4 x r x «) Bytes/sec, or 4 times higher than a single
thread per block mapping. Exploiting further parallelism within one ARXround
is not possible due to dependence of XOR, (X)) operation on the output of rotation
(R) and addition (A) as shown in Fig.

New Speed Records for Salsa20 Stream Cipher 195

Parallel threads

Thread0 | Thread 1 Thread 2 Thread 3 . Thread t
Block 0 Block 1 Block 2 Block 3 - Block t

Functional Alls (Al [Al B Al B Al s
arallelism Rl IRIEIRIE IR R Rk
p x| [|x X X X
g
. rowfcolumn
Data - elements
parallelism Al L Al L Al | Al s
R [x R [R R
I R AR LS AR 9

Thread 4 Thread 5 Thread 6 Thread 7
Block 1

Fig. 2. Parallelism in Salsa20/r

For coding Salsa20 kernels employing functional parallelism (one thread per
data block), internal registers and shared memory were used for storing re-
sults of Double Rounds and X respectively. For manipulating data parallelism
(four threads per data block) inter-thread communication is required within the
threads of a threadblock. Therefore the results of Double Rounds are also held
in shared memory. For this implementation the need of thread-synchronization
makes it lag behind in performance compared to single thread per block imple-
mentation. Experimentation of mapping AES on GPUs with different granulari-
ties also conform to our findings, as the best throughput performance is achieved
when no synchronization is required between different threads [I0J7]. Another
reason for avoiding intra-block synchronization is that for most GPU devices is
as follows. The limited number of shared memory limits instruction-level paral-
lelism by restricting the number of threads launched, lowering occupancy. Hence,
for the rest of the discussion, we consider only the single thread per data block
implementation due to its superior throughput performance.

3 Batch Processing Framework

Salsa20 algorithm is a classic case of a parallelizable application, for which per-
formance is dependent on the amount of parallel work received. For all such
applications, a batch processing framework of operation is recommended. It is
termed batch processing, since a batch of threads work simultaneously to encrypt
one data block each and iterating in a loop for encryption of more plaintext. The
batch of active threads die when all the data to be encrypted is exhausted.

3.1 CPU-GPU Interaction

Algorithm [I] explains the batch processing framework for encryption or decryp-
tion in a hybrid environment (CPU-GPU). We consider plaintext (P), given
as 1-D data to be the input to the application. Inputs to the framework for
Salsa20 encryption have already been explained in the functional description of
the algorithm in Section 21l The byte-length of a data block for encryption or

196 A. Khalid, G. Paul, and A. Chattopadhyay

decryption is called the blocksize. The initial state vector (X)) is set up at the
host machine using algorithm specific Initialization routine and transferred to
the global memory (gmem). Assuming encryption of P having size larger than
global memory (gmem) size, P is divided into chunks equal to size of gmem,
termed as Pj. Every k' iteration encrypts a portion of plaintext P, into an
equal sized ciphertext Cf (line no.). For simplicity, we assume the total size
of plaintext to be a multiple of the size of gmem, in case of non-conformity,
the number of data blocks forwarded to kernel for encryption is changed to the
residue after division with size(gmem) in the last iteration. For Salsa20, X is
a 16-word array and its subscript represents its existence location, i.e., h,g,s,r
representing host, global memory, shared memory and registers respectively. Af-
ter the transfer of Py to device’s gmem, launch of kernel is kick-started in an
iterative fashion. One batch of threads or threadsPerGrid, executed in parallel
on device, is blocksPerGrid x threadsPerBlock. In every iteration, when the
kernel call is terminated, gmem contains the cipher text, that must be read out
by the host (line no. [) before writing the next plaintext chunk into the device
memory (line no. M.

Input: key(k), nonce(n), counter(t), constants(¢p;), rounds, blocksize, plaintext(P)
Output: ciphertext (C)

1 X = Initialization(key, constants, counter, nonce);

2 Xp : host = gmem;

3 for k=1 to (si;;(z;'(,i)m)] step 1 do

4 Py : host = gmem;

5 Salsa20 kernel < blocksPerGrid, threadsPer Block >>
(rounds, size(gmem) /blocksize);

6 Xy : gmem = host;

7 Cy : gmem = host;

end

Algorithm 1. Batch processing for a cryptographic kernel

3.2 The CUDA Kernel

Algorithm] is the CUDA kernel call and is executed on the GPU device. Al-
though CUDA kernel functions do not have any output, the algorithm represents
a pseudo-code and the output specified is not the output of the kernel function.
Two local variables called counter and batch are declared and initialized, contain-
ing the unique threadID and the total number of threads in a batch respectively.
Variable counter is used to update the counter in the state vector of Salsa20,
incremented by the variable batch after every iteration. When a thread finishes
encrypting a block, it encrypts again the block corresponding to that thread
index plus the total number of active threads running (batch), which is constant
and device dependent.

The state vector, residing in global memory, is first copied to faster shmem.
As the size of global memory of newer NVIDIA GPUs is in GBs, a single batch
of parallel threads each encrypting one data block, will not finish up the P,

New Speed Records for Salsa20 Stream Cipher 197

Input: rounds, dataBlocks, plaintext(Py)
Output: ciphertext (Ck)

1 counter = blockDim.x * blockIdx.x 4+ threadldz.x;
2 batch = gridDim.x X blockDim.x;

3 X4 :gmem = shmem,;

4 for i=1 to dataBlocks step d“tfﬁi‘}’fks do
5 Xs = Xs + counter;

6 Xs : shmem = regs;

7 for j=1 to rounds step 2 do

8 state, = Double Round(state,);

end
9 Si = X, @ statey;
10 Py : gmem = regs;
11 Cri = Pri © Si;
12 Cri : regs = gmem;
13 counter+ = batch
end

14 X, : shmem = gmem;

Algorithm 2. Salsa20 kernel

requiring iterations over variable ¢, as given in line no. @l Here too, for the sake
of simplicity, we consider the number of dataBlocks forwarded to the kernel for
encryption or decryption to be a multiple of batch of threads. In case of non-
conformity, the pseudo code can be modified to launch lesser number of threads
in the batch in the last iteration. The state vector is updated with the counter
value as given in line no.[Hl Since threadID is different for each thread in a batch,
all threads get a different state vector. The variable state, refers to the register
copy of the state vector (it is copied from shmem to regs in line no. [@).

The value of rounds is either 8, 12 or 20 for various flavors of Salsa20/r. A
copy of state, in thread-local registers apply Double Round transformations for
m“2"d5 times. One block of keystream, generated by XOR-ing the state vector
with its transformed copy in local registers (line no. []), is held in S;.

The last step is the encryption of the plaintext with the generated keystream.
Plaintext is read from gmem, one block at a time (Py;), XOR-ed with the gener-
ated keystream to produce a block of ciphertext (Cy;) and then is written back
to gmem. Saving of state vector into gmem is required before exiting the kernel,
since its lifetime in shared memory lasts only as long as threadblock’s lifetime.

3.3 Programming Recommendations

CUDA programmers are recommended to follow the guides [I6/17] to achieve
the best performance. We summarize some more relevant recommendations for
good throughput performance when Algorithm [I] and 2l are mapped onto a GPU.

Avoiding threadBlock Switching Overhead. Each kernel launch on the de-
vice bears overheads of a kernel call, memory allocation and argument copying
into the device. If the amount of work per kernel is small in comparison to the
total workload, the run-time of the application is dominated by these overheads

198 A. Khalid, G. Paul, and A. Chattopadhyay

instead of the actual computation time. In order to decrease these overheads,
the amount of work per kernel call should be increased. Hence we resort to it-
erations computed inside a kernel call (loop indexed with ¢ in Algorithm) to
continue as long as the entire workload is finished instead of launching a new
batch of threads. This strategy amortizes the overhead of multiple kernel calls
across more computation and boosts throughput.

Reuse Memory. For cryptographic applications, the plaintext Py once handed
over to the device is not needed back by the host device. A prudent decision is
to overwrite the plaintext with ciphertext in the gmem. It saves the iterations
of loop indexed by k by half in Algorithm [l

Data Coalescing: Global memory accesses incur a 100x access penalty com-
pared to kernel local registers [16]. If these accesses are close to each other and
dispatched in a group, they are coalesced as a single access. The device can read
4-byte, 8-byte, or 16-byte words from global memory into registers in a single
instruction. Mixing of plaintext for generating ciphertext requires reading, XOR-
ing with keystream and writing back into the global memory as given by line
no.s [[0 [and [[2 respectively (in Algorithm B]). Maximum memory coalescing
that the device supports gives good saving in access time.

Autotune. The choice of grid dimensions, blocks PerGrid and threadsPer Block
is critical since it affects the throughput. It is discussed in detail in Section [l

3.4 Optimization for Salsa20

For a given key, the initial state vector for multiple blocks of Salsa20 encryption
remains the same except for a counter value, that is incremented for each block.
Hence it can be treated as a constant array, while the counter is taken care of by
each thread kernel individually by its threadl D. Keeping the initial state vector
in fast read-only constant memory, instead of shared memory, is therefore useful
as constant memory is optimized for broadcast due to data coalescing. Since
each block of Salsa20 requires reading of initial state vector twice, once before
the DoubleRound iterations and once after it (line no. 6l and [0 respectively
in Algorithm [2)), the use of constant memory is highly suited. CUDA specific
function cudaMemcpyToSymbol writes the initial state vector in the constant
memory. This strategy cannot be generalized to all ciphers. However, a prudent
use of a faster memory, whenever applicable, always enhances performance for
CUDA applications. This factor alone boosts the peak throughput for Salsa20/12
(for 1 GB of plaintext) by 4 GBps.

4 Autotuning Framework for Performance Optimizations

In context of a CUDA back-end application, our autotuning framework auto-
matically chooses tunable parameters of application mapping with the aim of

New Speed Records for Salsa20 Stream Cipher 199

improving a designated Figure of Merit (FoM). The tunable parameters may
be application specific, device dependent or compiler optimizations. Finding the
optimal values of these parameters may require extensive experimentation on a
case-by-case basis. Apart from promising a performance boost, another reason
for developing an autotuning framework is the provision of portability across dif-
ferent devices belonging to the same architecture family. Some common figures
of merit are listed below.

Occupancy. Device occupancy (or concurrency) is the ratio of active resident
threads to the maximum number of resident threads whose resources can be
stored on-chip simultaneously. Occupancy serves as a guideline for performance,
but does not guarantee optimized throughput.

GFLOPs. Comparison of application’s GFLOPs (Giga FLoating point Opera-
tions Per Second) against peak GFLOPs specified for a device. However, peak
GFLOPs is quoted strictly for Floating point instructions.

Throughput. It is the measured output rate (Bytes/sec) of an application
using timing functions on the device. Given the application in hand, we chose it
to be our FoM.

The aim of an autotuning framework is to admit a large range of tunable
parameters to CUDA application and select the one that makes the kernel run
most efficiently. The range of these tunable parameters may be dependent on the
constraints imposed by the device, application or both. The task of identifying
what parameters should be subjected to tuning is critical, since they vary widely
between algorithms. Keeping in mind the operation flow of the framework, we
classify these parameters optimizations as Compiler-specific and Device-specific.

4.1 Device-Specific Optimizations

Device-specific optimizations are the ones that are tweakable at the runtime of
the application, e.g., device grid dimensions. The given CUDA application is
enhanced by the addition of the provision of the kernel variants being subjected
to all possible combinations of these parameters after pruning by certain checks.
Benchmarking for throughput is also added for later use. As shown in Fig. 3 en-
hancement of the application with the addition of device specific optimizations
and benchmarking provision is the first step of the autotuning framework. How-
ever, execution of these enhancements does not manifest before various compiler
optimizations have been done and multiple copies of the code executables are
ready. Final runs of these programs result in sifting the fastest implementation
with recommended parametrization choices.

Algorithm [3] gives the pseudo-code of the device specific optimizations setup.
Out of the 4 different inputs, device properties (obtained by cudaDevice Prop
function) and compute capability properties (obtained from a lookup table corre-
sponding to major and minor compute capability) are device dependent. Kernel
constraints are application dependent and are obtained after compilation of the

200 A. Khalid, G. Paul, and A. Chattopadhyay

Program
+ device optimizations
+ bench marking

Compiler
optimization
parameters
e ——

CUDA Compiler

/ Resource \
\ usage == Optimized |)
AN Program *out /

Empirical
Experimentation &
Benchmarking

Optimized
Program

Fig. 3. Autotuning Framework Flowchart

program. minQOccupancy is specified by user to filter out kernels with too low
occupancy from experimentation. A higher value will prune the search space
more but might miss the fastest kernels too; a lower value, on the other hand,
will compromise on speed due to large search space for the fastest kernel.

All possible values of the two critical device parameters, threadsPer Block and
blocksPerSM, are considered for experimentation within their permitted range
in nested loops as specified by line no.Iland[2l Threadblock size should always be
a multiple of warpSize, because kernels issue instructions in warps. The next four
lines of code calculate the resource budget for the current configuration of the
device parameters. Total resident threadsPerSM is a product of blocksPerSM
and threadsPerBlock. The next two lines calculate the resource usage of register
and shared memory per kernel from the application specific parameters.

A kernel is subjected to experimentation with a set of possible device param-
eters configuration after pruning by 4 checks as specified from line no. [1 to 10l
Check 1 ensures that the maximum number of possible threads executable on
an SM is not exceeded. Check 2 and 3 ensure that the register budget and the
shared memory budget specific to one kernel is not exceeded. Check 4 makes
sure that the current device configuration has an occupancy higher than the
minimum specified by the user. Functions to calculate the time elapsed before
and after the kernel call are used to carryout the time duration benchmarking.

4.2 Compiler-Specific Optimizations

Compiler-specific optimizations are the ones that are subjected to the nvec com-
piler at the compile time, e.g., preprocessor directives. As shown in Fig. B this
step generates a number of optimized programs, each pertaining to a possible
permutation out of the range of all the compiler-specific optimization parame-
ters. Other than getting these executables, compiler generates information re-
garding the resource usage of the application in question, i.e., global, constant
memory usage per grid, register count, local memory and shared memory usage

New Speed Records for Salsa20 Stream Cipher 201

Input: 4 types of inputs:

1. Device: warpSize, maxRegsPerBlock, maxShMemPerBlock, maxThreadsPerBlock,
maxSM;

2. Compute Capability: maxBlocksPerSM, maxW arpsPerSM,;

3. Kernel constraints: regsPerThread, shMemPerThread;

4. User constraints: minOccupancy.

Output: Valid parameter variants for benchmarking

for threadsPerBlock = warpSize to maxThreadsPerBlock step warpSize do
for blocksPerSM = 1 to maxBlocksPerSM step 1 do

1

2

3 threadsPerSM = blocksPerSM X threadsPer Block;

4 regsPerSM = threadsPerSM X regsPerThread;

5 ShMemPerSM = threadsPerSM X shMemPerThread;
6

occupancy = threadsPerSM

(mazWarpsPerSMxwarpSize))

<

Checkl: threadsPerSM < (maxWarpsPerSM X warpSize);
Check2: regsPerSM < maxRegsPerBlock;

]

9 Check3: ShMemPerSM < maxShMemPerBlock;
10 Check4: occupancy > minOccupancy;
11 blocksPerGrid = maxSM X blocksPerSM;
12 success = kernel launch < blocksPerGrid, threadsPerBlock >>
end
end

Algorithm 3. Device-specific optimizations: Search space generation and
pruning

per kernel. These resources are used as constraints during the empirical experi-
mentation before reaching the performance-optimized kernel. The two compiler-
specific optimizations applicable for the current application are loop unrolling
and restricting per kernel register budget. Both of these manifest as a compro-
mise between parallelism and register pressure.

Unroll Factor. Loop Unrolling replaces the main body of a loop with mul-
tiple copies of itself, adjusting the control logic accordingly. #pragma unroll
n is a preprocessing directive where n defines the unroll factor (n = 1 means
no unrolling, n = k means full unrolling, where the trip count of the loop is
k). On the positive side, loop unrolling results in reduced dynamic instructions
(compare and jump) count, boosting speedup. On the negative side, however,
unrolling increases the total instruction count of the loop body and leads to an
increased register pressure. Since registers are partitioned among threadblocks,
an increased use of registers per threadblock reduces the device occupancy. This
may or may not affect the throughput and requires experimentation for assur-
ance. For Salsa20, the three flavors of the algorithm iterate for 4, 6 and 10 times
for Salsa20/8, Salsa20/12 and Salsa20/20 respectively. For each of these, unroll
factor from no unrolling to maximum unrolling is considered for experimentation.

Register Budget. A CUDA programmer can force a restricted number of reg-
isters by specifying cuda-nvcc-opts=-maxrregcount R, limiting the register use to
R per kernel. Lowering register count allows increased occupancy which may

202 A. Khalid, G. Paul, and A. Chattopadhyay

result in increased throughput. On a negative note, it may cause spilling into
the local memory when the register limit is exceeded. The local memory is as
slow as the global memory and spilling into it can consequently cause severe
performance degradation despite the higher occupancy. For all Salsa20 kernel
variants, the register budget varies from 26 to 43 for no unrolling to maximum
unrolling. For parametrization of register budget, all the multiples of 5 within
this minimum and maximum register use are considered. Lowering the register
budget any further than the minimum limit causes spilling and hence these cases
are omitted from benchmarking.

5 Results and Discussion

In this section, we present detailed experimental results and compare them with
the available state-of-the art benchmarks.

5.1 Experimental Setup

Throughput performances of Salsa20 stream cipher is reported for NVIDIA
GeForce GTX 590, although the autotuning framework is generic enough to
cater for any Fermi NVIDIA GPU device. To quantify the speedup against a
general purpose computer, a single threaded application program written in C
was run on an AMD Phenom 1055T Processor (clockspeed 2.8 GHz) with 8 GB
of RAM and Linux operating system. For a good approximation, each experi-
ment was run 100 times and the timing results were averaged.

5.2 Search Space Generation and Pruning

Table [l gives the possible range of parameters for the Salsa20 application kernel
for NVIDIA GeForce GTX 590. The register budget range was chosen within
the minimum and the maximum register requirements with no unroll and full
unroll respectively, in steps of 5. All possible values of the unroll factor are taken
into consideration. Grid dimension’s permitted range is dependent on the device.
Minimum occupancy was chosen to be 0.16, i.e., 256 threads per SM (256/1536),
since tests with selective lower occupancies gave inferior throughputs.

In order to give an idea of the magnitude of the possible kernel configura-
tions on which the autotuning framework carried out experimentation, some
numbers are presented. For Salsa20/20, 10 possible unroll factors generate 10

Table 1. Range of parameters for autotuning Salsa20 kernel on a GTX 590

Parameter Range
. . N Register budget 26, 30, 35, 40,43
Compiler-specific optimizations Unroll factor 1,2, r)2
Threads per block 32,64, ...,1024
Device-specific optimizations Blocks per SM 1,2,...8

Minimum occupancy 0.16

New Speed Records for Salsa20 Stream Cipher 203

optimized versions of the program, each a candidate for experimentation. Fur-
ther, each of them is subjected to restricted register budget to generate multiple
versions. Considering only the case of full unroll and unrestricted use of regis-
ters for Salsa20/20 kernel subjected to device specific constraints, the number
of allowed grid size combinations comes out to be 55. Extensive experimenta-
tion of all possible combinations of parameters after pruning was carried out for
benchmarking.

5.3 Compile Time Optimization of Register Pressure

To find the optimal trade-off between active concurrent threads and registers
availability per thread, two parameters have been tweaked. These are the re-
stricted use of register budget and register unrolling. Restricting the use of reg-
isters per thread was benchmarked to always have a deteriorating effect on the
throughput, in spite of increased occupancy. Changing the unroll factor, how-
ever, gives improved performance results. Fig. gives the effect of unrolling
factor on the registers used per thread for Salsa20/8, Salsa20/12 and Salsa20/20.
Since Salsa20/20 requires 10 loop iterations of Double Round function, unrolling
factors range from 1 to 10. Unrolling an n-iteration loop more than n times
makes no difference and is considered by the CUDA compiler as a full unroll.
Consequently, the unrolling of Salsa20/8 and Salsa20/12 kernels show no change
after unroll factor of 4 and 6 respectively.

5.4 Register Unroll vs. Throughput

The register unrolling positively effects the throughput in general as shown in
Fig. These results are obtained after benchmarking more than 2500 kernel
variants considering the full range of unroll factors and all grid dimensions sup-
ported by the device. Constraint of minOccupancy is applied, but register use
restriction at compile time is skipped since it does not boost the throughput.
The size of plaintext is kept 32 KB for encryption by the kernel.

Interestingly, the highest throughput for a Salsa20 kernel variant is obtained
when the inner loop is unrolled by a factor one less than the full unrolling. Con-
sidering the case of Salsa20/20, the registers used per kernel remain unchanged
till the unroll factor is raised from 1 till half of the full unroll factor, i.e., 5 as
given in Fig. For an unroll factor of 6 to 9, the no. of registers per kernel
increases from 39 and saturates to a maximum of 43 for the full unroll. By vary-
ing the grid dimension, we find that the best throughput figures are obtained
when the unroll factor is 9. Although partially unrolled loops may require some
cleanup code to account for loop iterations that are not an exact multiple of
the unrolling factor, it may or may not decrease the performance in practice.
Hence considering a range of unroll factors for experimentation proves beneficial
in reaching the optimized performance.

Similarly, for the other flavors of Salsa20, i.e., for Salsa20/8 and Salsa20/12,
the highest throughput is achieved when unroll factor is 3 and 5 respectively, as
shown in Table 2l For these unroll factors, the register usage in the three kernels

204 A. Khalid, G. Paul, and A. Chattopadhyay

W Salsa20/8 ™ Salsa20/12 = Salsa20/20 W Salsa20/8 ™ Salsa20/12 = Salsa20/20

05 | WM 24
3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

1 2

Registers per kemel
@ & o
® & &

Throughput (GBps)
® 8 & &

N

Unroll Factor Unroll Factor

Fig. 4. (a) Register pressure and (b) kernel throughput against unroll factor

Table 2. Salsa20 optimized parameters for GTX 590 (32 KB plaintext)

Autotuned Hand-tuned
Kernel Unroll Threads Blocks Device Throughput Throughput Improvement
variant factor per block per SM occupancy (GBps) (GBps) (GBps)
Salsa20/8 3 448 1 0.29 48.29 45.77 2.52
Salsa20/12 5 320 2 0.41 41.14 39.91 1.23
Salsa20/20 9 512 1 0.33 26.60 24.42 2.18

restricts the occupancy of the device. With 40 registers, no more than 25 warps
can be launched on each SM for GTX 590 (register limit on the device being
32K) restricting the device occupancy to 0.52. Table @I gives the throughput
performance with hand-tuned parametrization for maximum device occupancy.
The improvement in throughput obtained emphasizes the need of autotuning as
a necessary requirement for performance enhancement of a CUDA application.

5.5 Workload vs. Performance

Fig. Bl shows the performance of Salsa20 variants on a GTX 590 for varying
plaintext sizes. For throughput estimation, the plaintext blocksize is increased
from 1 Byte till 1 GB. For GTX 590, we cannot go beyond 1.5 GB in one batch
of plaintext encryption due to the size of the global memory (obtained from
cudaDeviceProp function). It is easy to see that the performance of Salsa20
is highly dependent on the amount of parallel work it receives. We find the

— Salsa20/8 —— Salsa20/12 Salsa20/20

Throughput (GBps)

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576

Plain text size (KB)

Fig. 5. Salsa20 throughput on GTX 590 for varying plaintext sizes (w/o mem trans.)

New Speed Records for Salsa20 Stream Cipher 205

—— AMD Phenom 1055T —— GTX 590 (with memory transfers)
2.5

15

Throughput (GBps)

0.5

1 2 4 8 16 32 64 128 256 512 1024

Plain text size (MB)

Fig. 6. Salsa20 throughput comparison on a CPU and GPU

peak throughput performance of Salsa20/8, Salsa20/12 and Salsa20/20 to reach
51.55, 43.44 and 27.65 GBps, respectively, outperforming the best reported GPU
implementations so far.

We also took into account the overhead attributable to the plaintext data
transfer from CPU to GPU and ciphertext data transfer from GPU to CPU to get
the effective throughput, as given in Fig. ll The peak performance for the GPU
under consideration reaches around 2.8 GBps with memory transfer overheads.
The severe drop in the throughput clearly indicates that the bottleneck in the
system is the data transfer bandwidth: PCle bandwidth. For the host CPU, i.e.,
for AMD Phenom 1055T, the peak performance reaches 157 MBps.

5.6 Comparison with Other Works

Table [3] gives a comparison of our work on Salsa20 acceleration on GPUs with
the results presented by D. Stefan [13] and S. Neves [12]. We also compare the
performance with the fastest reported AES implementation on GPUs [7]. For a
fair comparison, we scale up the throughput figures of other devices (without
memory transfers) in accordance with our newer GPU device by considering the
number of processor cores per device. Although the processing frequency of our
device is slower in comparison, we ignore this factor for scaling the throughput
calculation. The throughputs (GBps) per core from [I3[12] is (5.3/480 and
9/192), which is multiplied with the number of cores of our device (512) to get
5.7 GBps and 24 Gbps respectively. These scaled throughputs are surpassed
by our peak performance of 43.44 GBps. In [I3], the maximum throughput of
5.3 GBps (without memory transfers) was achieved for Trivium and that is also
far behind (even after scaling) the throughput of our implementation. Scaling on
similar lines, the AES implementation by Iwai et al. [7] results in a throughput of
9.3 GBps which is about 4.6 times slower than our reported peak performance for
Salsa20/12. This re-scaling formula would be invalid for throughput calculation
with memory transfers, since, like most of the cryptographic algorithms, Salsa20
and AES are data intensive in nature and show performance dependence on
external memory access speed. The main factor contributing to our performance
gain is the use of constant memory instead of shared memory for keeping the copy

206 A. Khalid, G. Paul, and A. Chattopadhyay

Table 3. Comparison of peak performance (Tp stands for Throughput)

D. Stefan[I3] S. Neves[12] This work Iwai et al.[T)
Algorithm Salsa20/12 Salsa20/12 Salsa20/12 AES
NVIDIA device GTX 295 GTX 260 GTX 590 (one GF110) GTX 285
Release (DD/MM/YYYY) 08/01/2009 16,/06/2008 24/03/2011 15/01/2009
Compute Capability 1.3 1.2 2.0 1.3
Processor cores 480 192 512 240
Shader Frequency (MHz) 1242 1350 1215 1470
Threads / Block 256 256 320 512
Tp (GBps)(w/ m) - 1.3 2.8 2.8
Tp (GBps)(w/o m) 5.3 9 43.44 4.4
Scaled Tp (GBps)(w/o m) 5.7 24 43.44 9.3

of the initial state vector. Moreover, our autotuning framework to sift out the
choice of parameters maximizing throughput also helps in reaching the claimed
performance. According to Table Bl our throughput with memory transfer is
the same as the best result known for AES. However, the claimed speed of
2.8 GBps for AES with memory transfers is reported after being improved by
68% by optimization of overlapping GPU processing and data transfers [7]. Our
current framework does not support this optimization. However, the search for
an optimal transfer blocksize to hide the transfer latency is on our roadmap.

6 Conclusion

We present an autotuning framework for Salsa20 series of stream cipher. It not
only guarantees fast portability for Fermi GPUs and optimized throughput per-
formance, but it can be generalized and extended to other massive parallel cryp-
tographic operations also. Moreover, our peak throughput figure of 43.44 GBps
surpasses the fastest GPU based performance reported so far for all stream ci-
phers (both hardware and software) in the eSTREAM portfolio [T2JI3I8], as well
as AES in CTR mode [7].

Regarding the future work, we plan to extend our efforts in different directions.
Firstly, we intend to benchmark GPU implementation of other parallelizable
stream ciphers (e.g., ChaCha [5], a variant of Salsa20). Secondly, we plan to
extend our autotuning framework to handle plaintext data ordered as a 2-D
array for multimedia applications. Generalization of our autotuning framework
for optimizing any symmetric key cryptographic kernel is also intended.

References

1. eSTREAM: the ECRYPT Stream Cipher Project,
http://www.ecrypt.eu.org/stream

2. Bernstein, D.J.: Hash functions and ciphers. In Notes on the ECRYPT Stream
Cipher Project (eSTREAM), http://cr.yp.to/streamciphers/why.html

3. Bernstein, D.J.: eBACS: ECRYPT Benchmarking of Cryptographic Systems,
http://bench.cr.yp.to/results-stream.html

http://www.ecrypt.eu.org/stream
http://cr.yp.to/streamciphers/why.html
http://bench.cr.yp.to/results-stream.html

10.

11.

12.

13.

14.

15.

16.

17.

18.

New Speed Records for Salsa20 Stream Cipher 207

Bernstein, D.J.: The salsa20 family of stream ciphers. In: Robshaw, M., Billet,
O. (eds.) New Stream Cipher Designs. LNCS, vol. 4986, pp. 84-97. Springer,
Heidelberg (2008)

Bernstein, D.J.: ChaCha, a variant of Salsa20. Workshop Record of SASC 2008:
The State of the Art of Stream Ciphers, http://cr.yp.to/papers.html#chacha
Biagio, A., Barenghi, A., Agosta, G., Pelosi, G.: Design of a parallel AES for
graphics hardware using the CUDA framework. In: International Symposium on
Parallel & Distributed Processing (IPDPS), pp. 1-8. IEEE (2009)

Iwai, K., Nishikawa, N., Kurokawa, T.: Acceleration of AES encryption on CUDA
GPU. International Journal of Networking and Computing 2(1), 131-145 (2012)
Khalid, A., Bagchi, D., Paul, G., Chattopadhyay, A.: Optimized GPU implemen-
tation and performance analysis of HC series of stream ciphers. In: Kwon, T.,
Lee, M.-K., Kwon, D. (eds.) ICISC 2012. LNCS, vol. 7839, pp. 293-308. Springer,
Heidelberg (2013), http://eprint.iacr.org/2013/059

Kurzak, J., Tomov, S., Dongarra, J.: Autotuning GEMM kernels for the Fermi
GPU. In: Transactions on Parallel and Distributed Systems, pp. 2045-2057. IEEE
(2012)

Manavski, S.A.: CUDA compatible GPU as an efficient hardware accelerator
for AES cryptography. In: International Signal Processing and Communications
(ICSPC), pp. 65-68. IEEE (2007)

Murthy, G.S., Ravishankar, M., Baskaran, M.M., Sadayappan, P.: Optimal loop
unrolling for GPGPU programs. In: International Symposium on Parallel &
Distributed Processing (IPDPS), pp. 1-11. IEEE (2010)

Neves, S.: Cryptography in GPUs. Master’s thesis (2009),
http://eden.dei.uc.pt/~sneves/pubs

Stefan, D.: Analysis and Implementation of eSTREAM and SHA-3 Cryptographic
Algorithms. Master’s thesis (2011), https://github.com/deian/gSTREAM.

Wu, H.: The Stream Cipher HC-128,
http://www.ecrypt.eu.org/stream/hcp3.html

NVIDIA’s Next Generation CUDA Compute Architecture: Fermi,
http://stanford-cs193g-sp2010.googlecode. com/svn/trunk/lectures/
lecture 4/cuda memories.pdf

CUDA C Programming Guide, http://docs.nvidia.com/cuda/cuda-c-
programming-guide/index.html#ptx-compatibility

CUDA C Best Practices Guide,
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
Basic Linear Algebra Subprograms Technical Forum Standard (August 2001),
http://www.netlib.org/blas/blast-forum/blas-report.ps

http://cr.yp.to/papers.html#chacha
http://eprint.iacr.org/2013/059
http://eden.dei.uc.pt/~sneves/pubs
https://github.com/deian/gSTREAM
http://www.ecrypt.eu.org/stream/hcp3.html
http://stanford-cs193g-sp2010.googlecode.com/svn/trunk/lectures/lecture_4/cuda_memories.pdf
http://stanford-cs193g-sp2010.googlecode.com/svn/trunk/lectures/lecture_4/cuda_memories.pdf
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#ptx-compatibility
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#ptx-compatibility
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
http://www.netlib.org/blas/blast-forum/blas-report.ps
https://www.researchgate.net/publication/266002588

	New Speed Records for Salsa20 Stream Cipher
Using an Autotuning Framework on GPUs

	1 Introduction and Motivation
	1.1 Why Salsa20?
	1.2 Why Autotuning?
	1.3 Our Contributions

	2 Parallelism Opportunities of Salsa20 in GPUs
	2.1 Description of Salsa20
	2.2 CUDA Programming Model Overview
	2.3 Analyzing Parallelism Opportunities of Salsa20

	3 Batch Processing Framework
	3.1 CPU-GPU Interaction
	3.2 The CUDA Kernel
	3.3 Programming Recommendations
	3.4 Optimization for Salsa20

	4 Autotuning Framework for Performance Optimizations
	4.1 Device-Specific Optimizations
	4.2 Compiler-Specific Optimizations

	5 Results and Discussion
	5.1 Experimental Setup
	5.2 Search Space Generation and Pruning
	5.3 Compile Time Optimization of Register Pressure
	5.4 Register Unroll vs. Throughput
	5.5 Workload vs. Performance
	5.6 Comparison with Other Works

	6 Conclusion
	References

