System for exascale supercomputer modeling based on thousands of FPGAs

Motivation Exaflop supercomputers are expected in 2018-20. It changes the programming paradigm dramatically. But, how it will looks like? Nobody knows the exact answer because we have no exascale experience. Let's make reconfigurable system that will represent a part of future supercomputer and begin the programming today!

Project mission is to create huge heterogeneous FPGA based system for modeling of exascale computer consisting of 10⁶-10⁷ cores and managing up to 10⁸-10⁹ threads. Modern FPGA technology will make it very flexible for representing a wide range of existing and developing supercomputer architectures including light/heavy cores, CPU/GPU modules, DSM/PGAS memory, Infiniband/Ethernet/custom interconnects etc. Modeling system will help to test and optimize user programs for real exascale systems before them will be ready to use.

Specifications

Up to 512 Intel x86 processors Up to 72 TB Shared memory Up to 8192 Xilinx Virtex UltraScale FPGAs Up to 36 billions Virtex7 logic cells Up to 8 TB Shared memory on FPGAs Up to 1.5 MW power consumption Up to 64 19' cabinets

Main customer

Russian Academy of Sciences http://www.ras.ru

Contractors

Keldysh Institute of Applied Mathematics http://www.keldysh.ru

Scientific-Research Institute "Kvant" http://www.rdi-kvant.ru

Lomonosov Moscow State University http://www.msu.ru

Subcontractors

Engineering Physics Center of Lomonosov Moscow State University. MSU Science Park, Bld. 77, Leninskie Gory, Moscow, Russian Federation, 119992 Tel.: +7(499)343-5624, Mob.: +7(916)636-8719 E-mail: <u>elizarov@physics.msu.ru</u> web site: www.maltsystem.com/en

